13 resultados para Female expression

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM: To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system abnormalities such as altered motility. METHODS: The study examined the distribution of the P2X(2) receptor (P2X(2)R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X(2)R with neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice. In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm(2)) and area profile (mu m(2)) of P2X(2)R-positive neurons. In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NADH) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and area. RESULTS: In the present study, we observed a 29.6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG). In addition, the average small intestine area was increased by approximately 29.6% in the OG compared to the CG. Immunoreactivity (IR) for the P2X(2)R, nNOS, ChAT and CaIR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups. This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes. P2X(2)R-IR was observed to co-localize 100% with that for nNOS, ChAT and CaIR in neurons of both groups. In the ob/ob group, however, we observed that the neuronal density (neuron/cm(2)) of P2X(2)R-IR cells was increased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice. The neuronal density of CaIR-IR neurons was not different between the groups. Morphometric studies further demonstrated that the cell body profile area (mu m(2)) of nNOS-IR, ChAT-IR and CaIR-IR neurons was increased by 34%, 20% and 55%, respectively, in the OG compared to controls. Staining for NADH diaphorase activity is widely used to detect alterations in the enteric nervous system; however, our qualitative examination of NADH-diaphorase positive neurons in the nnyenteric ganglia revealed an overall similarity between the two groups. CONCLUSION: We demonstrate increases in P2X(2)R expression and alterations in nNOS, ChAT and CaIR IR in ileal myenteric neurons of female ob/ob mice compared to wild-type controls. (c) 2012 Baishideng. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several biological and clinical studies have suggested that conjugated linoleic acid (CLA) prevents body fat accumulation and increases lean body mass. CLA is available as a concentrated dietary supplement and is purported to provide the aforementioned benefits for people who perform physical activity. This study was conducted to evaluate the effect of a CLA-supplemented diet combined with physical activity on the body composition of Wistar rats. Two groups of Wistar rats of both sexes, between 45 and 60 days old, were fed a diet containing 5.5% soybean oil (control group) or a CLA-supplemented diet (0.5% CLA and 5.0% soybean oil) (test group). Half the rats in both groups were assigned to exercise by running on a treadmill. The biochemical and anatomical body compositions were analyzed. In both groups, CLA had no effect on the dietary consumption or the weight of the liver, heart, and lungs. However, it did influence the overall weight gain of exercised male rats and the chemical and anatomical body composition in exercised and sedentary rats of both sexes. The results confirm that a CLA-supplemented diet with and without physical activity reduced body fat accumulation in rats of both sexes. However, there is no evidence of an increase in the lean body mass of the exercised rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DA SILVA, N. D. JR, T. FERNANDES, U. P. R. SOCI, A. W. A. MONTEIRO, M. I. PHILLIPS, and E. M. DE OLIVEIRA. Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp. 1453-1462, 2012. Purpose: MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. Methods: Female Wistar rats were assigned to three groups: sedentary (S), training 1 (T1, moderate volume), and training 2 (T2, high volume). T1 consisted of 60 min.d(-1) of swimming, five times per week for 10 wk with 5% body overload. T2 consisted of the same protocol of T1 until the eighth week; in the ninth week, rats trained for two times a day, and in the 10th week, rats trained for three times a day. MiRNA and PI3KR2 gene expression analysis was performed by real-time polymerase chain reaction in heart muscle. We assessed markers of training, the cardiac capillary-fiber ratio, cardiac protein expression of VEGF, Spred-1, Raf-1/ERK 1/2, and PI3K/Akt/eNOS. Results: The cardiac capillary-fiber ratio increased in T1 (58%) and T2 (101%) compared with S. VEGF protein expression was increased 42% in T1 and 108% in T2. Cardiac miRNA-126 expression increased 26% (T1) and 42% (T2) compared with S, correlated with angiogenesis. The miRNA-126 target Spred-1 protein level decreased 41% (T1) and 39% (T2), which consequently favored an increase in angiogenic signaling pathway Raf-1/ERK 1/2. On the other hand, the gene expression of PI3KR2, the other miRNA-126 target, was reduced 39% (T1) and 78% (T2), and there was an increase in protein expression of components of the PI3K/Akt/eNOS signaling pathway in the trained groups. Conclusions: This study showed that aerobic training promotes an increase in the expression of miRNA-126 and that this may be related to exercise-induced cardiac angiogenesis, by indirect regulation of the VEGF pathway and direct regulation of its targets that converged in an increase in angiogenic pathways, such as MAPK and PI3K/Akt/eNOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Vasoactive intestinal peptide (VIP) is a neuropeptide with elevated expression in regions that control urogenital functions. Estrogen appears to modulate VIP expression in various organs, but this effect has not been demonstrated in the vaginal wall. The aim of this study was to evaluate the influence of estrogen status on VIP expression in vessels of the vaginal wall. Methods Surgical specimens were removed from the vaginal walls of 18 premenopausal women and 12 postmenopausal women who were given surgery for genital prolapse grade I or II. Vaginal specimens were stained with estrogen receptor-alpha (ER-alpha) and VIP antibodies. Levels of follicle stimulating hormone (FSH), estradiol, prolactin, fasting glucose and serum thyroxine stimulating hormone were also measured. Estrogen status was assessed on the basis of FSH and ER-alpha scores. Results The vaginal walls of premenopausal women had significantly higher ER-alpha scores than those of menopausal women (premenopausal group, 3.6 +/- 2.2; menopausal group, 1.4 +/- 1.8; p = 0.01). Premenopausal women also had significantly higher levels of VIP in the vaginal wall than menopausal women (p = 0.02). Increasing age was associated with lower level of VIP staining (odds ratio 0.88; 95% confidence interval 0.78-0.99). Conclusion Levels of ER-alpha and VIP expression in the posterior vaginal wall were higher in premenopausal than in menopausal women, but VIP expression was not associated with estrogen status. Age was an independent predictor of VIP staining in vaginal wall biopsies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 +/- 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p < .0001) in SAT in comparison to VAT was PER1 of female (372%) and male (326%) subjects. Different patterns of expression between the AM and PM periods were observed, in particular REV-ERBa, which was reduced (p < .05) at the PM period in SAT and VAT of both women and men (women: similar to 53% lower; men: similar to 78% lower), whereas CLOCK expression was not altered. Relationships between clock genes were different in SAT vs. VAT. BMI was negatively correlated with SATPER1 (r = -.549; p = .001) and SATPER2 (r = -.613; p = .0001) and positively with VATCLOCK (r = .541; p = .001) and VATBMAL1 (r = .468; p = .007) only in women. These data suggest that the circadian clock machinery of adipose tissue depots differs between female and male subjects, with a sex-specific effect observed for some genes. BMI correlated with clock genes, but at this moment it is not possible to establish the cause-effect relationship. (Author correspondence: mzanquetta@gmail.com)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previous study from our laboratory showed that maternal food restriction (MFR) delays thermoregulation in newborn rats. In neonates brown adipose tissue (BAT) is essential for thermogenesis due to the presence of uncoupling proteins (UCPs). The aim of this study was to evaluate the influence of MFR on the UCPs mRNA and protein expression in BAT and skeletal muscle (SM) of the newborn rat. Female Wistar EPM-1 control rats (CON) received chow ad libitum during pregnancy, whereas food-restricted dams (RES) received 50% of the amount ingested by CON. Fifteen hours after birth, the litters were weighed and sacrificed. Blood was collected for hormonal analysis. BAT and SM were used for determination of UCPs mRNA and protein expression, and Ca2+-ATPase sarcoplasmic reticulum (SERCA1). RES pups showed a significant reduction in body weight and fat content at birth. MFR caused a significant increase in the expression of UCP1 and UCP2 in BAT, without changes in UCP3 and SERCA1 expression in BAT and SM. No differences between groups were found for leptin, T4 and glucose levels. RES pups showed increased insulin and decreased T3 levels. The delay in development of thermoregulation previously described in RES animals appears not to result from impairment in thermogenesis, but from an increase in heat loss, since MFR caused low birth weight in pups, leading to greater surface/volume ratio. The higher expression of UCP1 and UCP2 in BAT suggests a compensatory mechanism to increased thermogenesis. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives The effects of longterm ethanol consumption on the levels of nitric oxide (NO) and the expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS) and metalloproteinase-2 (MMP-2) were studied in rat kidney. Methods Male Wistar rats were treated with 20% ethanol (v/v) for 6 weeks. Nitrite and nitrate generation was measured by chemiluminescence. Protein and mRNA levels of eNOS and iNOS were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. MMP-2 activity was determined by gelatin zymography. Histopathological changes in kidneys and indices of renal function (creatinine and urea) and tissue injury (mitochondrial respiration) were also investigated. Results Chronic ethanol consumption did not alter malondialdehyde levels in the kidney. Ethanol consumption induced a significant increase in renal nitrite and nitrate levels. Treatment with ethanol increased mRNA expression of both eNOS and iNOS. Immunohistochemical assays showed increased immunostaining for eNOS and iNOS after treatment with ethanol. Kidneys from ethanol-treated rats showed increased activity of MMP-2. Histopathological investigation of kidneys from ethanol-treated animals revealed tubular necrosis. Indices of renal function and tissue injury were not altered in ethanol-treated rats. Conclusions Ethanol consumption increased renal metalloproteinase expression/activity, which was accompanied by histopathological changes in the kidney and elevated NO generation. Since iNOS-derived NO and MMPs contribute to progressive renal injury, the increased levels of NO and MMPs observed in ethanol-treated rats might contribute to progressive renal damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlotterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. Results: We reanalyzed the dataset published by Metta and Schlotterer and found several issues that led us to a different conclusion. In particular, Metta and Schlotterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schltterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlotterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. Conclusions: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Pituitary tumor transforming gene (pttg) is a novel oncogene that is expressed at higher level in most of the tumors analyzed to date compared to normal tissues. Nevertheless, its expression in prolactinomas and its relation with the pituitary dopamine receptor 2 (D2R) are not well defined. We sought to determine the pituitary level of pttg in three different experimental models of prolactinomas with altered dopaminergic control of the pituitary: the dopaminergic D2R knockout female mouse, the estrogen-treated rat, and the senescent female rat. These three models shared the characteristics of increased pituitary weight, hyperprolactinemia, lactotrope hyperplasia and reduced or absent dopaminergic action at the pituitary level. We also studied samples from human macroprolactinomas, which were characterized as responsive or resistant to dopamine agonist therapy. Results When compared to female wild-type mice, pituitaries from female D2R knockout mice had decreased PTTG concentration, while no difference in pttg mRNA level was found. In senescent rats no difference in pituitary PTTG protein expression was found when compared to young rats. But, in young female rats treated with a synthetic estrogen (Diethylstylbestrol, 20 mg) PTTG protein expression was enhanced (P = 0.029). Therefore, in the three experimental models of prolactinomas, pituitary size was increased and there was hyperprolactinemia, but PTTG levels followed different patterns. Patients with macroprolactinomas were divided in those in which dopaminergic therapy normalized or failed to normalize prolactin levels (responsive and resistant, respectively). When pituitary pttg mRNA level was analyzed in these macroprolactinomas, no differences were found. We next analyzed estrogen action at the pituitary by measuring pituitary estrogen receptor α levels. The D2R knockout female mice have low estrogen levels and in accordance, pituitary estrogen receptors were increased (P = 0.047). On the other hand, in senescent rats estrogen levels were slightly though not significantly higher, and estrogen receptors were similar between groups. The estrogen-treated rats had high pharmacological levels of the synthetic estrogen, and estrogen receptors were markedly lower than in controls (P < 0.0001). Finally, in patients with dopamine resistant or responsive prolactinomas no significant differences in estrogen receptor α levels were found. Therefore, pituitary PTTG was increased only if estrogen action was increased, which correlated with a decrease in pituitary estrogen receptor level. Conclusion We conclude that PTTG does not correlate with prolactin levels or tumor size in animal models of prolactinoma, and its pituitary content is not related to a decrease in dopaminergic control of the lactotrope, but may be influenced by estrogen action at the pituitary level. Therefore it is increased only in prolactinomas generated by estrogen treatment, and not in prolactinomas arising from deficient dopamine control, or in dopamine resistant compared with dopamine responsive human prolactinomas. These results are important in the search for reliable prognostic indicators for patients with pituitary adenomas which will make tumor-specific therapy possible, and help to elucidate the poorly understood phenomenon of pituitary tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Variations in maternal care are associated with neonatal stress, hormonal disturbances and reproductive injuries during adulthood. However, the effects of these variations on sex hormones and steroid receptors during ovary development remain undetermined. This study aimed to investigate whether variations in maternal care are able to influence the hormonal profile, follicular dynamics and expression of AR, ER-alpha and ER-beta in the ovaries of UCh rat offspring. Methods: Twenty-four adult UCh rats, aged 120 days, were randomly divided into two groups (UChA and UChB) and mated. Maternal care was assessed from birth (day 0) to the 10th postnatal day (PND). In adulthood, twenty adult female rats (UChA and UChB offspring; n = 10/group), aged 120 days, were euthanized by decapitation during the morning estrus. Results: UChA females (providing high maternal care) more frequently displayed the behaviors of carrying pups, as well as licking/grooming and arched back nursing cares. Also, mothers providing high care had elevated corticosterone levels. Additionally, offspring receiving low maternal care showed the highest estrous cycle duration, increased corticosterone and 17beta-estradiol levels, overexpression of receptors ER-alpha and ER-beta, increased numbers of primordial, antral and mature follicles and accentuated granulosa cell proliferation. Conclusions: Our study suggests that low maternal care alters corticosterone and 17beta-estradiol levels, disrupting the estrous cycle and folliculogenesis and differentially regulating the expression of ER-alpha and ER-beta in the ovaries of adult rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown the differential expression of versican in the mouse uterus under ovarian hormone influence. We also demonstrated there is not a direct correlation between mRNA levels and protein expression, suggesting posttranscriptional events, such as alteration in mRNA stability. This posttranscriptional effect may result in the elongation and stabilization of transcripts poly(A) tail. Thus, the aim of this study was to analyze whether estradiol (E2) regulates versican mRNA stability and expression in a dose-related and time-dependent manner. For this purpose female mice were ovariectomized and treated with a single injection of 0.1 or 10 μg E2. To block transcription a group of females received a single injection of alpha-amanitin before hormone administration. Uterine tissues were collected 30 min, 1, 3, 6, 12 and 24 h after treatments and processed for quantitative real time PCR (qPCR), RACE-PAT Assay and immunohistochemistry. qPCR showed that versican mRNA levels are higher than control from 3 to 24 h after E2 administration, whereas after transcription inhibition versican mRNA unexpectedly increases within 3 h, which can be explained when transcriptional blockers alter the degradation rate of the transcript, resulting in the superinduction of this mRNA. Accordingly, analysis of versican transcript poly(A) tail evidenced a longer product 3 h after treatment, but not after 12 h. Versican immunoreaction becomes conspicuous in the superficial stroma only 3 h after E2 injection, whereas the whole stroma is immunoreactive from 6 h onward. These results demonstrate that E2 modulates versican at the transcriptional and posttranscriptional levels in a time-dependent manner.