13 resultados para Factor 2

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dysregulation of the WNT and insulin-like growth factor 2 (IGF2) signaling pathways has been implicated in sporadic and syndromic forms of adrenocortical carcinoma (ACC). Abnormal beta-catenin staining and CTNNB1 mutations are reported to be common in both adrenocortical adenoma and ACC, whereas elevated IGF2 expression is associated primarily with ACC. To better understand the contribution of these pathways in the tumorigenesis of ACC, we examined clinicopathological and molecular data and used mouse models. Evaluation of adrenal tumors from 118 adult patients demonstrated an increase in CTNNB1 mutations and abnormal beta-catenin accumulation in both adrenocortical adenoma and ACC. In ACC, these features were adversely associated with survival. Mice with stabilized beta-catenin exhibited a temporal progression of increased adrenocortical hyperplasia, with subsequent microscopic and macroscopic adenoma formation. Elevated Igf2 expression alone did not cause hyperplasia. With the combination of stabilized beta-catenin and elevated Igf2 expression, adrenal glands were larger, displayed earlier onset of hyperplasia, and developed more frequent macroscopic adenomas (as well as one carcinoma). Our results are consistent with a model in which dysregulation of one pathway may result in adrenal hyperplasia, but accumulation of a second or multiple alterations is necessary for tumorigenesis. (Ant J Pathol 2012, 181:1017-1033; http://dx.doi.org/10.1016/j.ajpath.2012.05.026)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background The etiology of Bell's palsy can vary but anterograde axonal degeneration may delay spontaneous functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2) pathway signaling is a potential candidate for therapeutic development because its role on wound repair and autocrine/paracrine trophic mechanisms in the lesioned nervous system. Methods Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven days later. Results Crush and transection lesions promoted no changes in the number of neurons but increased the neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes (confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and in the nucleus of reactive astrocytes, respectively, without astrocytic reaction. Conclusion FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a therapeutic target to Bell's palsy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Thyroid hormones (THs) are known to regulate protein synthesis by acting at the transcriptional level and inducing the expression of many genes. However, little is known about their role in protein expression at the post-transcriptional level, even though studies have shown enhancement of protein synthesis associated with mTOR/p70S6K activation after triiodo-l-thyronine (T3) administration. On the other hand, the effects of TH on translation initiation and polypeptidic chain elongation factors, being essential for activating protein synthesis, have been poorly explored. Therefore, considering that preliminary studies from our laboratory have demonstrated an increase in insulin content in INS-1E cells in response to T3 treatment, the aim of the present study was to investigate if proteins of translational nature might be involved in this effect. Methods: INS-1E cells were maintained in the presence or absence of T3 (10(-6) or 10(-8) M) for 12 hours. Thereafter, insulin concentration in the culture medium was determined by radioimmunoassay, and the cells were processed for Western blot detection of insulin, eukaryotic initiation factor 2 (eIF2), p-eIF2, eIF5A, EF1A, eIF4E binding protein (4E-BP), p-4E-BP, p70S6K, and p-p70S6K. Results: It was found that, in parallel with increased insulin generation, T3 induced p70S6K phosphorylation and the expression of the translational factors eIF2, eIF5A, and eukaryotic elongation factor 1 alpha (eEF1A). In contrast, total and phosphorylated 4E-BP, as well as total p70S6K and p-eIF2 content, remained unchanged after T3 treatment. Conclusions: Considering that (i) p70S6K induces S6 phosphorylation of the 40S ribosomal subunit, an essential condition for protein synthesis; (ii) eIF2 is essential for the initiation of messenger RNA translation process; and (iii) eIF5A and eEF1A play a central role in the elongation of the polypeptidic chain during the transcripts decoding, the data presented here lead us to suppose that a part of T3-induced insulin expression in INS-1E cells depends on the protein synthesis activation at the post-transcriptional level, as these proteins of the translational machinery were shown to be regulated by T3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to test the psychometric properties of the Neurobehavior Inventory (NBI) in a group of temporal lobe epilepsy (TLE) patients from a tertiary care center, correlating its scores with the presence of psychiatric symptoms. Methods: Clinical and sociodemographic data from ninety-six TLE outpatients were collected, and a neuropsychiatric evaluation was performed with the following instruments: Mini-Mental State Examination (MMSE), structured psychiatric interview (MINI-PLUS), Neurobehavior Inventory (NBI), and Hamilton Depression Rating Scale (HAM-D). Results: Some traits evaluated by the NBI showed adequate internal consistency (mean inter-item correlation between 0.2 and 0.4) and were frequent, such as religiosity (74%) and repetitiveness (60.4%). Principal component analysis showed three factors, named here as emotions (Factor 1), hyposexuality (Factor 2), and unusual ideas (Factor 3). Depressive symptoms on HAM-D showed a strong association with emotions and hyposexuality factors. When patients with left TLE and right TLE were compared, the former exhibited more sadness (p=0.017), and the latter, a greater tendency toward sense of personal destiny (p=0.028). Conclusion: Depression influences NBI scoring, mainly emotionality and hyposexuality traits. Neurobehavior Inventory subscales can be better interpreted with an appropriate evaluation of comorbid mood and anxiety disorders. Compromise in left temporal mesial structures is associated with increased tendency toward sad affect, whereas right temporal pathology is associated with increased beliefs in personal destiny. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Cardiac remodeling in uremia is characterized by left ventricular hypertrophy, interstitial fibrosis and microvascular disease. Cardiovascular disease is the leading cause of death in uremic patients, but coronary events alone are not the prevalent cause, sudden death and heart failure are. We studied the cardiac remodeling in experimental uremia, evaluating the isolated effect of parathyroid hormone (PTH) and phosphorus. Methods. Wistar rats were submitted to parathyroidectomy (PTx) and 5/6 nephrectomy (Nx); they also received vehicle (V) and PTH at normal (nPTH) or high (hPTH) doses. They were fed with a poor-phosphorus (pP) or rich-phosphorus (rP) diet and were divided into the following groups: 'Sham': G1 (V + normal-phosphorus diet (np)) and 'Nx + PTx': G2 (nPTH + pP), G3 (nPTH + rP), G4 (hPTH + pP) and G5 (hPTH + rP). After 8 weeks, biochemical analysis, myocardium morphometry and arteriolar morphological analysis were performed. In addition, using immunohistochemical analysis, we evaluated angiotensin II, alpha-actin, transforming growth factor-beta (TGF-beta) and nitrotyrosine, as well as fibroblast growth factor-23 (FGF-23), fibroblast growth factor receptor-1 (FGFR-1) and runt-related transcription factor-2 (Runx-2) expression. Results. Nx animals presented higher serum creatinine levels as well as arterial hypertension. Higher PTH levels were associated with myocardial hypertrophy and fibrosis as well as a higher coronary lesion score. High PTH animals also presented a higher myocardial expression of TGF-beta, angiotensin II, FGF-23 and nitrotyrosine and a lower expression of alpha-actin. Phosphorus overload was associated with higher serum FGF-23 levels and Runx-2, as well as myocardial hypertrophy. FGFR-1 was positive in the cardiomyocytes of all groups as well as in calcified coronaries of G4 and G5 whereas Runx-2 was positive in G3, G4 and G5. Conclusion. In uremia, PTH and phosphorus overload are both independently associated with major changes related to the cardiac remodeling process, emphasizing the need for a better control of these factors in chronic kidney disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Periodontal diseases result from the interaction of bacterial pathogens with the hosts gingival tissue. Gingival epithelial cells are constantly challenged by microbial cells and respond by altering their transcription profiles, inducing the production of inflammatory mediators. Different transcription profiles are induced by oral bacteria and little is known about how the gingival epithelium responds after interaction with the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. In the present study, we examined the transcription of genes involved in signaling transduction pathways in gingival epithelial cells exposed to viable A.actinomycetemcomitans. Immortalized gingival epithelial cells (OBA-9) were infected with A.actinomycetemcomitans JP2 for 24 h and the transcription profile of genes encoding human signal transduction pathways was determined. Functional analysis of inflammatory mediators positively transcribed was performed by ELISA in culture supernatant and in gingival tissues. Fifteen of 84 genes on the array were over-expressed (P < 0.01) after 24 h of infection with viable A.actinomycetemcomitans. Over-expressed genes included those implicated in tissue remodeling and bone resorption, such as CSF2, genes encoding components of the LDL pathway, nuclear factor-?B-dependent genes and other cytokines. The ELISA data confirmed that granulocytemacrophage colony-stimulating factor/colony-stimulating factor 2, tumor necrosis factor-a and intercellular adhesion molecule-1 were highly expressed by infected gingival cells when compared with control non-infected cells, and presented higher concentrations in tissues from patients with aggressive and chronic periodontitis than in tissues from healthy controls. The induction in epithelial cells of factors such as the pro-inflammatory cytokine CSF2, which is involved in osteoclastogenesis, may help to explain the outcomes of A.actinomycetemcomitans infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C–C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C–C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3−/− and CCR1−/− mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3−/− mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3−/− and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the odontogenic potential of undifferentiated pulp cells (OD-21 cell line) through chemical stimuli in vitro. Cells were divided into uninduced cells (OD-21), induced cells (OD-21 cultured in supplemented medium/OD-21+OM) and odontoblast-like cells (MDPC-23 cell line). After 3, 7, 10 and 14 days of culture, it was evaluated: proliferation and cell viability, alkaline phosphatase activity, total protein content, mineralization, immunolocalization of dentin matrix acidic phosphoprotein 1 (DMP1), alkaline phosphatase (ALP) and osteopontin (OPN) and quantification of genes ALP, OSTERIX (Osx), DMP1 and runt-related transcription factor 2 (RUNX2) through real-time polymerase chain reaction (PCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (p<0.05). There was a decrease in cell proliferation in OD-21 + OM, whereas cell viability was similar in all groups, except at 7 days. The amount of total protein was higher in group OD-21 + OM in all periods; the same occurred with ALP activity after 10 days when compared with OD-21, with no significant differences from the MDPC-23 group. Mineralization was higher in OD-21+OM when compared with the negative control. Immunolocalization demonstrated that DMP1 and ALP were highly expressed in MDPC-23 cells and OD-21 + OM cells, whereas OPN was high in all groups. Real-time PCR revealed that DMP1 and ALP expression was higher in MDPC-23 cell cultures, whereas RUNX2 was lower for these cells and higher for OD-21 negative control. Osx expression was lower for OD-21 + OM. These results suggest that OD-21 undifferentiated pulp cells have odontogenic potential and could be used in dental tissue engineering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective-Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results-Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant approximate to 3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. Conclusion-Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events. (Arterioscler Thromb Vasc Biol. 2012;32:2185-2196.)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Zinc-alpha 2-glycoprotein (ZAG) is a lipid mobilizing factor. Its anti-inflammatory action and expression pattern suggest that ZAG could act by protecting against the obesity-associated disorders. In hemodialysis (HD) patients, ZAG levels were described to be elevated but its effects on markers of inflammation and LDL oxidation are still unclear. We investigated the relationship between ZAG and markers of systemic inflammation and LDL atherogenic modification profile in HD patients. Methods: Forty-three patients regularly on HD were studied and compared to 20 healthy subjects. Plasma ZAG, adiponectin, electronegative LDL [LDL(-)], an atherosclerotic negatively charged LDL subtraction, and anti-LDL(-) autoantibodies levels were measured by ELISA. Markers of inflammation and atherogenic cell recruitment (TNF-alpha, interleukin-6, VCAM-1, ICAM-1, MCP-1 and PAI-1) were also determined. Results: Inflammatory markers and atherogenic cell recruitment were higher in HD patients when compared to healthy subjects. ZAG levels were also higher in HD patients (151.5 +/- 50.1 mg/l vs 54.6 +/- 23.0 mg/l; p<0.0001) and its levels were negatively correlated with TNF-alpha (r= -0.39; p = 0.001) and VCAM-1 (r= -0.52; p<0.0001) and, positively correlated with anti-LDL(-) autoantibodies (r = 038; p = 0.016). On multivariate analyses, plasma ZAG levels were independently associated with VCAM-1 (p = 0.01). Conclusion: ZAG is inversely associated with markers of pro-atherogenic factors linked to systemic inflammation and oxidative stress. Thus, this adipokine may constitute a novel marker of a favorable metabolic profile regarding cardiovascular risk factors in HD population. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Macrophage ingestion of the yeast Candida albicans requires its recognition by multiple receptors and the activation of diverse signaling programs. Synthesis of the lipid mediator prostaglandin E-2 (PGE(2)) and generation of cyclic adenosine monophosphate (cAMP) also accompany this process. Here, we characterized the mechanisms underlying PGE(2)-mediated inhibition of phagocytosis and filamentous actin (F-actin) polymerization in response to ingestion of C. albicans by alveolar macrophages. PGE(2) suppressed phagocytosis and F-actin formation through the PGE(2) receptors EP2 and EP4, cAMP, and activation of types I and II protein kinase A. Dephosphorylation and activation of the actin depolymerizing factor cofilin-1 were necessary for these inhibitory effects of PGE(2). PGE(2)-dependent activation of cofilin-1 was mediated by the protein phosphatase activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10), with which it directly associated. Because enhanced production of PGE(2) accompanies many immunosuppressed states, the PTEN-dependent pathway described here may contribute to impaired antifungal defenses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Fibroblasts are now seen as active components of the immune response because these cells express Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns, and mediate the production of cytokines and chemokines during inflammation. The innate host response to lipopolysaccharide (LPS) from Porphyromonas gingivalis is unusual inasmuch as different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) and an antagonist or agonist for Toll-like receptor 4 (TLR4). This study investigates and compares whether signaling through TLR2 or TLR4 could affect the secretion of interleukin (IL)-6, IL-8, and stromal derived factor-1 (SDF-1/CXCL12) in both human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). Methods: After small interfering RNA-mediated silencing of TLR2 and TLR4, HGF and HPDLF from the same donors were stimulated with P. gingivalis LPS or with two synthetic ligands of TLR2, Pam2CSK4 and Pam3CSK4, for 6 hours. IL-6, IL-8, and CXCL12 mRNA expression and protein secretion were evaluated by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: TLR2 mRNA expression was upregulated in HGF but not in HPDLF by all the stimuli applied. Knockdown of TLR2 decreased IL-6 and IL-8 in response to P. gingivalis LPS, or Pam2CSK4 and Pam3CSK4, in a similar manner in both fibroblasts subpopulations. Conversely, CXCL12 remained unchanged by TLR2 or TLR4 silencing. Conclusion: These results suggest that signaling through TLR2 by gingival and periodontal ligament fibroblasts can control the secretion of IL-6 and IL-8, which contribute to periodontal pathogenesis, but do not interfere with CXCL12 levels, an important chemokine in the repair process.