10 resultados para FUNCTIONAL MORPHOLOGY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A revision of the deep-water verticordiid genus Spinosipella is provided, based on conchological and anatomical characters. The genus is considered distinct from Verticordia (of which it was considered a subgenus) based on the strong ribs, prickly surface, reduction of lunula, relative large size, weakly spiral valve shape, and other characters. The following species are considered in the genus: (1) Spinosipella agnes new species, ranging from Florida, USA, to Rio de Janeiro, Brazil, and also including the Porcupine Abyssal Plain in the North Atlantic; (2) S. tinga new species, occurring from Rio de Janeiro to Rio Grande do Sul, Brazil; (3) S. acuticostata (Philippi, 1844), a Pliocene fossil from southern Italy; (4) S. deshayesiana (Fischer, 1862), from south and central Indo-Pacific (S. ericia Hedley, 1911, the type species of the genus, was revealed to be a new synonym of S. deshayesiana); and (5) S. costeminens (Poutiers, 1981), from the tropical west Pacific. The five species differ mainly in conchological details of the number and size of ribs, of the prickly sculpture, shape of the shell, of the hinge and the degree of convexity. Anatomical description is also provided for the two Pacific species, which differ among themselves mainly by the size of the pair of renal folds. From the standpoint of anatomical characters, the more significant are: the wide lithodesma; the elongation of the auricles, crossing the roof of pallial cavity; a tall digital fold in posterior region of supraseptal chamber; the low but wide palps; the muscular, gizzard-like stomach; the complete separation of both constituents of the hermaphroditic gonad (a ventro-posterior testicle and a centro-dorsal ovary), and a complete fusion of the visceral ganglia.
Resumo:
During copulation, spermatophores produced by male coleoid cephalopods undergo the spermatophoric reaction, a complex process of evagination that culminates in the attachment of the spermatangium (everted spermatophore containing the sperm mass) on the female's body. To better understand this complicated phenomenon, the present study investigated the functional morphology of the spermatophore of the squid Doryteuthis plei applying in vitro analysis of the reaction, as well as light and electron microscopy investigation of spermatangia obtained either in vitro, or naturally attached on females. Hitherto unnoticed functional features of the loliginid spermatophore require a reappraisal of some important processes involved in the spermatophoric reaction. The most striking findings concern the attachment mechanism, which is not carried out solely by cement adhesive material, as previously believed, but rather by an autonomous, complex process performed by multiple structures during the spermatophoric reaction. During evagination, the ejaculatory apparatus provides anchorage on the targeted tissue, presumably due to the minute stellate particles present in the exposed spiral filament. Consequently, the ejaculatory apparatus maintains the attachment of the tip of the evaginating spermatophore until the cement body is extruded. Subsequently, the cement body passes through a complex structural rearrangement, which leads to the injection of both its viscid contents and pointed oral region onto the targeted tissue. The inner membrane at the oral region of the cement body contains numerous stellate particles attached at its inner side; eversion of this membrane exposes these sharp structures, which presumably adhere to the tissue and augment attachment. Several naturally attached spermatangia were found with their bases implanted at the deposition sites, and the possible mechanisms of perforation are discussed based on present evidence. The function of the complex squid spermatophore and its spermatophoric reaction is revisited in light of these findings. J. Morphol. 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Marian, J.E.A.R. and Domaneschi, O. 2012. Unraveling the structure of squids spermatophores: a combined approach based on Doryteuthis plei (Blainville, 1823) (Cephalopoda: Loliginidae). Acta Zoologica (Stockholm) 93: 281307. Male coleoid cephalopods produce elaborate spermatophores, which function autonomously outside the male body during copulation, undergoing a complicated process of evagination. In order to contribute to the understanding of this unique structure, this study investigated the morphology of the spermatophore of Doryteuthis plei applying several microscopy techniques. A hitherto unreported, much more complex structural arrangement was revealed for the loliginid spermatophore, the most striking findings being: (1) the complex, layered structure of the middle membrane, which bears an additional, chemically distinct segment surrounding part of the cement body; (2) the presence of a space between the inner tunic and middle membrane filled with a fine reticulated material; (3) the presence of stellate particles not only embedded in the spiral filament, but also closely applied to the inner membrane at the level of the cement body; (4) the presence of a pre-oral chamber in the cap region; and (5) the complex organization of the cement body, formed by two distinct layers encompassing contents of different chemical and textural properties. Careful literature reassessment suggests several of these features are common to loliginids, and to some extent to other squids. Their possible functional implications are discussed in light of our knowledge of the spermatophoric reaction mechanics.
Resumo:
Male coleoid cephalopods produce spermatophores that can attach autonomously on the female's body during a complex process of evagination called the spermatophoric reaction, during which the ejaculatory apparatus and spiral filament of the spermatophore are everted and exposed to the external milieu. In some deepwater cephalopods, the reaction leads to the intradermal implantation of the spermatophore, a hitherto enigmatic phenomenon. The present study builds upon several lines of evidence to propose that spermatophore implantation is probably achieved through the combination of (1) an evaginating-tube mechanism performed by the everting ejaculatory apparatus and (2) the anchorage provided by the spiral filament's stellate particles. The proposed theoretical model assumes that, as it is exposed to the external milieu, each whorl of the spiral filament anchors to the surrounding tissue by means of its sharp stellate particles. As the ejaculatory apparatus tip continues evaginating, it grows in diameter and stretches lengthwise, enlarging the diameter of the whorl and propelling it, consequently tearing and pushing the anchored tissue outward and backward, and opening space for the next whorl to attach. After the ejaculatory apparatus has been everted and has perforated tissue, the cement body is extruded, possibly aiding in final attachment, and the sperm mass comes to lie inside the female tissue, encompassed by the everted ejaculatory apparatus tube. It is proposed that this unique, efficient spermatophore attachment mechanism possibly evolved in intimate relationship with the adoption of an active mode of life by coleoids. The possible roles of predation pressure and sperm competition in the evolution of this mechanism are also discussed. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 711726.
Resumo:
Birds are the most diverse and largest group of extant tetrapods. They show marked variability, yet much of this variation is superficial and due to feather and bill color and shape. Under the feathers, the skeleto-muscular system is rather constant throughout the bird group. The adaptation to flight is the explanation for this uniformity. The more obvious morphological adaptations for flight are the wings, but the trunk is always rigid, the tail is short and the neck is flexible, since all these features are correlated with flying behaviour. Unrelated to the exigencies of flight, the legs always have three long bones, and all the birds walk on their toes. This leg structure is a striking plesiomorphic feature that was already present in related dinosaurs. The multi-purpose potential of the legs is the result of the skeletal architecture of a body with three segmented flexed legs. This configuration provides mechanical properties that allow the use of the legs as propulsive, paddling, foraging or grooming tools. It is the association of diverse modes of locomotion-walking, running, hopping, flying and swimming-that have enabled the birds to colonize almost all the environments on Earth.
Resumo:
Male squid produce intricate spermatophores that, when transferred to the female, undergo the spermatophoric reaction, a complex process of evagination that leads to the attachment of the spermatangium, that is, the everted spermatophore containing the sperm mass. While this process is still not completely understood, the medical literature includes several reports of "oral stinging" (i.e., punctured wounds in the human oral cavity) following consumption of raw male squid, which contains undischarged spermatophores able to inflict such wounds. Here, we revisit a recent medical report of oral stinging by Shiraki et al. (Pathol Int 61:749-751, 2011), providing an in-depth reanalysis of their histological biopsies and revealing vital information on the functioning of squid spermatophores. The morphology of the spermatangia attached within the oral cavity is similar to the condition found in spermatangia naturally attached to female squids. The spermatangia were able to superficially puncture the superficial layers of the oral stratified squamous epithelium, and numerous, minute stellate particles from the squid spermatophore were found adhered to the oral epithelium. These findings corroborate previous hypotheses on the functioning of squid spermatophores, namely that spermatophore attachment generally involves tissue scarification, and that stellate particles play a vital role in the attachment process. Moreover, spermatophore attachment is confirmed to be autonomous (i.e., performed by the spermatophore itself) in another squid species (possibly a loliginid), and the results strongly indicate that the attachment mechanism is not dependent upon a specialized epithelium, nor a mate's specific chemical stimulus. From the pathological point of view, the best prophylactic measure at present is the removal of the internal organs of the raw squid prior to its consumption.
Resumo:
Body size influences wing shape and associated muscles in flying animals which is a conspicuous phenomenon in insects, given their wide range in body size. Despite the significance of this, to date, no detailed study has been conducted across a group of species with similar biology allowing a look at specific relationship between body size and flying structures. Neotropical social vespids are a model group to study this problem as they are strong predators that rely heavily on flight while exhibiting a wide range in body size. In this paper we describe the variation in both wing shape, as wing planform, and mesosoma muscle size along the body size gradient of the Neotropical social wasps and discuss the potential factors affecting these changes. Analyses of 56 species were conducted using geometric morphometrics for the wings and lineal morphometrics for the body; independent contrast method regressions were used to correct for the phylogenetic effect. Smaller vespid species exhibit rounded wings, veins that are more concentrated in the proximal region, larger stigmata and the mesosoma is proportionally larger than in larger species. Meanwhile, larger species have more elongated wings, more distally extended venation, smaller stigmata and a proportionally smaller mesosoma. The differences in wing shape and other traits could be related to differences in flight demands caused by smaller and larger body sizes. Species around the extremes of body size distribution may invest more in flight muscle mass than species of intermediate sizes.
Resumo:
Gelatin-based films containing both Yucca schidigera extract and low concentrations of glycerol (0.25-8.75 g per 100 g protein) were produced by extrusion (EF) and characterized in relation to their mechanical properties and moisture content. The formulations that resulted in either larger or smaller elongation values were used to produce films via both blown extrusion (EBF) and casting (CF) and were characterized with respect to their mechanical properties, water vapor permeability, moisture content, solubility, morphology and infrared spectroscopy. The elongation of the EF films was significantly higher than that of the CF and EBF films. The transversal section possessed a compact, homogeneous structure for all of the films studied. The solubility of the films (36-40%) did not differ significantly between the different processes evaluated. The EBF films demonstrated lower water vapor permeability (0.12 g mm m-(2) h(-1) kPa(-1)) than the CF and EF films. The infrared spectra did not indicate any strong interactions between the added compounds. Thermoplastic processing of the gelatin films can significantly increase their elongation; however, a more detailed assessment and optimization of the extrusion conditions is necessary, along with the addition of partially hydrophobic compounds, such as surfactants. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this work, mesoporous titania is prepared by templating latex sphere arrays with four different sphere diameters at the micrometric scale (phi > 1 mu m). The mesoporous titania homogeneously covers the latex spheres and substrate, forming a thin coating characterized by N-2 adsorption isotherm, small angle X-rays scattering, atomic force, field emission and transmission electronic microscopies. Mesoporous titania has been templated into different shapes such as hollow particles and monoliths according to the amount of sol used to fill the voids of the close packed latex spheres. Titania topography strongly depends on the adsorption of polymeric segments over latex spheres surface, which could be decreased by changing the dimensions of latex spheres (phi = 9.5 mu m) generating a lamellar architecture. Thus, micrometric latex sphere arrays can be used to achieve new surface patterns for mesoporous materials via a fast and inexpensive chemical route for construction of functional devices in different technological fields such as energy conversion, inclusion chemistry and biomaterials. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Male capacity for spreading genes to a great number of descendents and to determine population dynamics depend directly on the genital organs. Morphological studies in pinnipeds are scarce and the functional meaning of some characteristics has never been discussed. We hypothesized that Arctocephalus australis (A. australis) shows morphophysiological adaptations in order to guarantee the perpetuation of the species in the unique annual mating season. Seven males, dead from natural causes, had their genital organs collected and fixed for morphological description. Some features differ from other described mammalian males and are closely related to the biology and reproductive cycle of this species, as the scrotal epidermis, absence of glandular portion in the ductus deferens and spermatogenic epithelium suggest a recrudescent testis period. The corona glandis exhibits a singular arrangement: its erectile border looks like a formation of petals and its association with the os penis gives a "lily-flower" form to this region. We propose the name margo petaliformis to this particular erectile border of the corona glandis because of its similarity to a flower corola. The male genital organs of A. australis show morphological features compatible with adaptation to environment requirements and reproductive efficiency.