2 resultados para FDM

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we report results of continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy of vanadium oxide nanotubes. The observed EPR spectra are composed of a weak well-resolved spectrum of isolated V4+ ions on top of an intense and broad structure-less line shape, attributed to spin-spin exchanged V4+ clusters. With the purpose to deconvolute the structured weak spectrum from the composed broad line, a new approach based on the Krylov basis diagonalization method (KBDM) is introduced. It is based on the discrimination between broad and sharp components with respect to a selectable threshold and can be executed with few adjustable parameters, without the need of a priori information on the shape and structure of the lines. This makes the method advantageous with respect to other procedures and suitable for fast and routine spectral analysis, which, in conjunction with simulation techniques based on the spin Hamiltonian parameters, can provide a full characterization of the EPR spectrum. Results demonstrate and characterize the coexistence of two V4+ species in the nanotubes and show good progress toward the goal of obtaining high fidelity deconvoluted spectra from complex signals with overlapping broader line shapes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton nuclear magnetic resonance (H-1 NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T-2 filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T-2 filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T-2 or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.