3 resultados para Física de Plasmas
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In the present paper, we solve a twist symplectic map for the action of an ergodic magnetic limiter in a large aspect-ratio tokamak. In this model, we study the bifurcation scenarios that occur in the remnants regular islands that co-exist with chaotic magnetic surfaces. The onset of atypical local bifurcations created by secondary shearless tori are identified through numerical profiles of internal rotation number and we observe that their rupture can reduce the usual magnetic field line escape at the tokamak plasma edge.
Resumo:
We analyse the dynamics of a relativistic particle moving in a uniform magnetic field and perturbed by a stationary electrostatic wave. We show that a pulsed wave produces an infinite number of perturbing terms with the same winding number. The perturbation coupling alters the number of island chains as a function of the parameters of the wave. We also observe that the number of chains in is always even if the number of islands in each chain is odd.
Resumo:
Actually, transition from positive to negative plasma current and quasi-steady-state alternated current (AC) operation have been achieved experimentally without loss of ionization. The large transition times suggest the use of MHD equilibrium to model the intermediate magnetic field configurations for corresponding current density reversals. In the present work we show, by means of Maxwell equations, that the most robust equilibrium for any axisymmetric configuration with reversed current density requires the existence of several nonested families of magnetic surfaces inside the plasma. We also show that the currents inside the nonested families satisfy additive rules restricting the geometry and sizes of the axisymmetric magnetic islands; this is done without restricting the equilibrium through arbitrary functions. Finally, we introduce a local successive approximations method to describe the equilibrium about an arbitrary reversed current density minimum and, consequently, the transition between different nonested topologies is understood in terms of the eccentricity of the toroidal current density level sets.