3 resultados para Event Scale
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abundance and composition of marine benthic communities have been relatively well studied in the SE Brazilian coast, but little is known on patterns controlling the distribution of their planktonic larval stages. A survey of larval abundance in the continental margin, using a Multi-Plankton Sampler, was conducted in a cross-shelf transect off Cabo Frio (23 degrees S and 42 degrees W) during a costal upwelling event. Hydrographic conditions were monitored through discrete CDT casts. Chlorophyll-a in the top 100 m of the water column was determined and changes in surface chlorophyll-a was estimated using SeaWiFS images. Based on the larval abundances and the meso-scale hydrodynamics scenario, our results suggest two different processes affecting larval distributions. High larval densities were found nearshore due to the upwelling event associated with high chlorophyll a and strong along shore current. On the continental slope, high larval abundance was associated with a clockwise rotating meander, which may have entrapped larvae from a region located further north (Cabo de Sao Tome, 22 degrees S and 41 degrees W). In mid-shelf areas, our data suggests that vertical migration may likely occur as a response to avoid offshore transport by upwelling plumes and/or cyclonic meanders. The hydrodynamic scenario observed in the study area has two distinct yet extremely important consequences: larval retention on food-rich upwelling areas and the broadening of the tropical domain to southernmost subtropical areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Many recent survival studies propose modeling data with a cure fraction, i.e., data in which part of the population is not susceptible to the event of interest. This event may occur more than once for the same individual (recurrent event). We then have a scenario of recurrent event data in the presence of a cure fraction, which may appear in various areas such as oncology, finance, industries, among others. This paper proposes a multiple time scale survival model to analyze recurrent events using a cure fraction. The objective is analyzing the efficiency of certain interventions so that the studied event will not happen again in terms of covariates and censoring. All estimates were obtained using a sampling-based approach, which allows information to be input beforehand with lower computational effort. Simulations were done based on a clinical scenario in order to observe some frequentist properties of the estimation procedure in the presence of small and moderate sample sizes. An application of a well-known set of real mammary tumor data is provided.
Resumo:
The paleoclimatic record of Jureia Paleolagoon, coastal southeastem Brazil, includes cyclic and gradual changes with different intensities and frequencies through geological time, and it is controlled by astronomical, geophysical, and geological phenomena. These variations are not due to one single cause, but they result from the interaction of several factors, which act at different temporal and spatial scales. Here, we describe paleoenvironmental evidence regarding climatic and sea level changes from the last 9400 cal yr BP at the Jureia Paleolagoon - one of the main groups of protected South Atlantic ecosystems. Geochemical evidences were used to identify anomalies from multi-proxy analyses of a paleolagoon sediment core. The anomalies of centennial scale were correlated to climate and transgression-regression cycles from the Holocene period. Decadal scale anomalous oscillations in the Quaternary paleolagoon sediments occur between 9400 and 7500 cal yr BP, correlated with long- and short-term natural events, which generated high sedimentation rates, mainly between 8385 and 8375 cal yr BP (10 cm/yr). Our results suggest that a modem-day short-duration North Atlantic climatic event, such as the 82 ka event, could affect the environmental equilibrium in South America and intensify the South American Summer Monsoon. (C) 2011 University of Washington. Published by Elsevier Inc. All rights reserved.