13 resultados para Espionage, Soviet
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: The complex natural history of human papillomavirus (HPV) infections following a single HPV test can be modeled as competing-risks events (i.e., no-, transient- or persistent infection) in a longitudinal setting. The covariates associated with these compet ng events have not been previously assessed using competing-risks regression models. Objectives: To gain further insights in the outcomes of cervical HPV infections, we used univariate- and multivariate competing-risks regression models to assess the covariaies associated with these competing events. Study Design and Methods: Covariates associated with three competing outcomes (no-, transient- or persistent HR-HPV infection) were analysed in a sub-cohort of 1,865 women prospectively followed-up in the NIS (n = 3,187) and LAMS Study (n = 12,114). Results: In multivariate competing-risks models (with two other outcomes as competing events), permanently HR-HPV negative outcome was significantly predicted only by the clearance of ASCUS+Pap during FU, while three independent covariates predicted transient HR-HPV infections: i) number of recent (< 12 months) sexual partners (risk increased), ii) previous Pap screening history (protective), and history of previous CIN (increased risk). The two most powerful predictors of persistent HR-HPV infections were persistent ASCUS+Pap (risk increased), and previous Pap screening history (protective). In pair-wise comparisons, number of recent sexual partners and previous CIN history increase the probability of transient HR-HPV infection against the HR-HPV negative competing event, while previous Pap screening history is protective. Persistent ASCUS+Pap during FU and no previous Pap screening history are significantly associated with the persistent HR-HPV outcome (compared both with i) always negative, and ii) transient events), whereas multiparity is protective. Conclusions: Different covariates are associated with the three main outcomes of cervical HPV infections. The most significant covariates of each competing events are probably distinct enough to enable constructing of a risk-profile for each main outcome.
Resumo:
Background: Heavy-flavor production in p + p collisions is a good test of perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p + p results, quantified with the nuclear-modification factor (R-AA), provides information on both cold-and hot-nuclear-matter effects. Midrapidity heavy-flavor R-AA measurements at the Relativistic Heavy Ion Collider have challenged parton-energy-loss models and resulted in upper limits on the viscosity-entropy ratio that are near the quantum lower bound. Such measurements have not been made in the forward-rapidity region. Purpose: Determine transverse-momentum (p(T)) spectra and the corresponding R-AA for muons from heavy-flavor meson decay in p + p and Cu + Cu collisions at root s(NN) = 200 GeV and y = 1.65. Method: Results are obtained using the semileptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p(T) spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p + p collisions at root s = 200 GeV, integrated over p(T) and in the rapidity range 1.4 < y < 1.9, is found to be d(sigma e (e) over bar)/dy = 0.139 +/- 0.029 (stat)(-0.058)(+0.051) (syst) mb. This result is consistent with a perturbative fixed-order-plus-next-to-leading-log calculation within scale uncertainties and is also consistent with expectations based on the corresponding midrapidity charm-production cross section measured by PHENIX. The R-AA for heavy-flavor muons in Cu + Cu collisions is measured in three centrality bins for 1 < p(T) < 4 GeV/c. Suppression relative to binary-collision scaling (R-AA < 1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured charm yield in p + p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu + Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.
Resumo:
Background: In addition to the oncogenic human papillomavirus (HPV), several cofactors are needed in cervical carcinogenesis, but whether the HPV covariates associated with incident i) CIN1 are different from those of incident ii) CIN2 and iii) CIN3 needs further assessment. Objectives: To gain further insights into the true biological differences between CIN1, CIN2 and CIN3, we assessed HPV covariates associated with incident CIN1, CIN2, and CIN3. Study Design and Methods: HPV covariates associated with progression to CIN1, CIN2 and CIN3 were analysed in the combined cohort of the NIS (n = 3,187) and LAMS study (n = 12,114), using competing-risks regression models (in panel data) for baseline HR-HPV-positive women (n = 1,105), who represent a sub-cohort of all 1,865 women prospectively followed-up in these two studies. Results: Altogether, 90 (4.8%), 39 (2.1%) and 14 (1.4%) cases progressed to CIN1, CIN2, and CIN3, respectively. Among these baseline HR-HPV-positive women, the risk profiles of incident GIN I, CIN2 and CIN3 were unique in that completely different HPV covariates were associated with progression to CIN1, CIN2 and CIN3, irrespective which categories (non-progression, CIN1, CIN2, CIN3 or all) were used as competing-risks events in univariate and multivariate models. Conclusions: These data confirm our previous analysis based on multinomial regression models implicating that distinct covariates of HR-HPV are associated with progression to CIN1, CIN2 and CIN3. This emphasises true biological differences between the three grades of GIN, which revisits the concept of combining CIN2 with CIN3 or with CIN1 in histological classification or used as a common end-point, e.g., in HPV vaccine trials.
Resumo:
Neutral-pion pi(0) spectra were measured at midrapidity (vertical bar y vertical bar < 0.35) in Au + Au collisions at root s(NN) = 39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1 < p(T) < 10 GeV/c. The high-p(T) tail is well described by a power law in all cases, and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding spectra for p + p collisions. The nuclear modification factors (RAA) show significant suppression, with a distinct energy, centrality, and p(T) dependence. Above p(T) = 7 GeV/c, R-AA is similar for root sNN = 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R-AA well at 200 GeV fail to describe the 39 GeV data, raising the possibility that, for the same p(T) region, the relative importance of initial-state effects and soft processes increases at lower energies. The p(T) range where pi(0) spectra in central Au + Au collisions have the same power as in p + p collisions is approximate to 5 and 7 GeV/c for root sNN = 200 and 62.4 GeV, respectively. For the root sNN = 39 GeV data, it is not clear whether such a region is reached, and the x(T) dependence of the x(T)-scaling power-law exponent is very different from that observed in the root sNN = 62 and 200 GeV data, providing further evidence that initial-state effects and soft processes mask the in-medium suppression of hardscattered partons to higher p(T) as the collision energy decreases.
Resumo:
We report the measurement of direct photons at midrapidity in Au + Au collisions at root s(NN) = 200 GeV. The direct photon signal was extracted for the transverse momentum range of 4 GeV/c < pT < 22 GeV/c, using a statistical method to subtract decay photons from the inclusive photon sample. The direct photon nuclear modification factor R-AA was calculated as a function of p(T) for different Au + Au collision centralities using the measured p + p direct photon spectrum and compared to theoretical predictions. R-AA was found to be consistent with unity for all centralities over the entire measured pT range. Theoretical models that account for modifications of initial direct photon production due to modified parton distribution functions in Au and the different isospin composition of the nuclei predict a modest change of R-AA from unity. They are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement.
Resumo:
We present measurements of the J/psi invariant yields in root s(NN) = 39 and 62.4 GeV Au + Au collisions at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au + Au collisions (R-CP) and for various centrality selections in Au + Au relative to scaled p + p cross sections obtained from other measurements (R-AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement. DOI: 10.1103/PhysRevC.86.064901
Resumo:
We report on charmonium measurements [J/psi (1S), psi' (2S), and chi(c) (1P)] in p + p collisions at root s = 200 GeV. We find that the fraction of J/psi coming from the feed-down decay of psi' and chi(c) in the midrapidity region (vertical bar y vertical bar < 0: 35) is 9.6 +/- 2.4% and 32 +/- 9%, respectively. We also present the p(T) and rapidity dependencies of the J/psi yield measured via dielectron decay at midrapidity (vertical bar y vertical bar < 0.35) and via dimuon decay at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). The statistical precision greatly exceeds that reported in our previous publication [Phys. Rev. Lett. 98, 232002 (2007)]. The new results are compared with other experiments and discussed in the context of current charmonium production models.
Resumo:
The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at root s(NN) = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the p(T) < 4 GeV/c region dominated by thermal photons, we find a substantial direct-photon v(2) comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v(2).
Resumo:
The differential cross section for the production of direct photons in p + p collisions at root s = 200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive direct photons were measured in the transverse momentum range from 5: 5-25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x(T), the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.
Resumo:
During the period of 2001 and 2008, the Brazilian Gymnastics Confederation implemented the gymnasts training boarding center system at the Curitiba Training Center (TC). Using the former Soviet Union model of sports boarding schools, the Brazilian gymnasts started to train together under the supervision of a technical team led by a renowned foreign coach. This article aims to discuss the context of the TC and the system of centralized preparation of the Brazilian women artistic gymnastics (WAG) showing the point of view of the coaches. We conducted a field survey and we interviewed 34 coaches of 29 sport institutions. Among the positive aspects, the coaches reported about the better infrastructure available to the gymnasts. The negative aspects refer to the problems regarding rigorous training, the polarization and the consequent monopolization of athletes showing lack of adaptation of the Soviet model to the WAG characteristics developed in Brazil.
Resumo:
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d + Au and p + p collisions at root S-NN = 200 GeV in the transverse-momentum range 0.85 <= p(T)(e) <= 8.5 GeV/c. In central d + Au collisions, the nuclear modification factor R-dA at 1.5 < p(T) < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p + p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi(0) and heavy-flavor-electron nuclear modification factors R-AA. DOI: 10.1103/PhysRevLett.109.242301
Resumo:
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p + p collisions at root s = 62.4 GeV are presented. The PHENIX measurement of the cross sections for 1.0 < p(T) < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong-coupling constant, alpha(s). Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 less than or similar to x(gluon) less than or similar to 0.2, is consistent with recent global parametrizations disfavoring large gluon polarization.
Resumo:
Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KET/n(q) in noncentral Au + Au collisions (20-60%), but this scaling remains valid in central collisions (0-10%).