3 resultados para Escalonamento multidimensional
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Este artigo faz parte de um amplo estudo de avaliação da adequação no uso de técnicas estatísticas multivariadas em teses e dissertações de duas instituições de ensino superior na área de marketing na temática do comportamento do consumidor, entre 1997 e 2006. Neste artigo são focalizadas onze técnicas multivariadas (análise de regressão, análise discriminante, análise de regressão logística, correlação canônica, análise multivariada de variância, análise conjunta, modelagem de equações estruturais, análise fatorial, análise de conglomerados, análise de correspondência, escalonamento multidimensional), as quais têm apresentado grande potencial de uso em estudos de marketing. Foi objetivo no trabalho relatado a análise da adequação do emprego dessas técnicas às necessidades dos problemas de pesquisa apresentados nas teses e dissertações e, também, a aferição do nível de adequação no atendimento de suas premissas. De forma geral, os resultados sugerem a necessidade de um aumento do comprometimento dos pesquisadores na verificação de todos os preceitos teóricos de aplicação das técnicas multivariadas.
Resumo:
Content-based image retrieval is still a challenging issue due to the inherent complexity of images and choice of the most discriminant descriptors. Recent developments in the field have introduced multidimensional projections to burst accuracy in the retrieval process, but many issues such as introduction of pattern recognition tasks and deeper user intervention to assist the process of choosing the most discriminant features still remain unaddressed. In this paper, we present a novel framework to CBIR that combines pattern recognition tasks, class-specific metrics, and multidimensional projection to devise an effective and interactive image retrieval system. User interaction plays an essential role in the computation of the final multidimensional projection from which image retrieval will be attained. Results have shown that the proposed approach outperforms existing methods, turning out to be a very attractive alternative for managing image data sets.
Resumo:
Visual analysis of social networks is usually based on graph drawing algorithms and tools. However, social networks are a special kind of graph in the sense that interpretation of displayed relationships is heavily dependent on context. Context, in its turn, is given by attributes associated with graph elements, such as individual nodes, edges, and groups of edges, as well as by the nature of the connections between individuals. In most systems, attributes of individuals and communities are not taken into consideration during graph layout, except to derive weights for force-based placement strategies. This paper proposes a set of novel tools for displaying and exploring social networks based on attribute and connectivity mappings. These properties are employed to layout nodes on the plane via multidimensional projection techniques. For the attribute mapping, we show that node proximity in the layout corresponds to similarity in attribute, leading to easiness in locating similar groups of nodes. The projection based on connectivity yields an initial placement that forgoes force-based or graph analysis algorithm, reaching a meaningful layout in one pass. When a force algorithm is then applied to this initial mapping, the final layout presents better properties than conventional force-based approaches. Numerical evaluations show a number of advantages of pre-mapping points via projections. User evaluation demonstrates that these tools promote ease of manipulation as well as fast identification of concepts and associations which cannot be easily expressed by conventional graph visualization alone. In order to allow better space usage for complex networks, a graph mapping on the surface of a sphere is also implemented.