3 resultados para Erosión Response Units (ERUs)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
Background: The aim of this study was investigate the relationship between ABCB1 and ABCC3 gene expressions in peripheral blood cells (PBC) and the response to clopidogrel in patients with coronary arterial disease (CAD). Methods: Twenty-six male CAD patients (50-70 years) under treatment with clopidogrel (75 mg/day) for at least 5 days were selected. Blood samples were obtained to evaluate platelet reactivity and ABCB1 and ABCC3 mRNA expression. Platelet reactivity was measured in P2Y12 Reaction Units (PRU) using VerifyNow. RNA was extracted from PBC and mRNA levels were measured by qPCR, using GAPD as a reference gene. Results: Platelet response to clopidogrel was categorized in to PRU quartiles. Individuals with PRU values within the first quartile (Q1, <151 units) were considered good responders, while those who had PRU within the fourth quartile (Q4. PRU>260) were considered non-responders. ABCC3 was 1.7 times more expressed in Q4 than in Q1 PRU group (p=0.048). Moreover, CAD patients with low ABCC3 expression (Qe1, <2.5x10(-3)) had higher probability to have a good response to clopidogrel (OR: 18.00, 95%CI: 1.90-169.99, p=0.001). Univariate linear regression analysis demonstrated that low ABCC3 mRNA expression contributed with a reduction of 73 PRU in relation to the patients with expression value higher than 2.5x10(-3) (p=0.027). Neither ABCB1 mRNA levels nor clinical variables studied influenced PRU values. Conclusions: Low ABCC3 mRNA expression in peripheral blood cells is associated with increased clopidogrel response, but further studies are needed to describe the functional relationship of clopidogrel with the ABCC3. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the β2-adrenoceptor gene. Methods A total of 162 preselected individuals were genotyped for the Glu27Gln β2-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 ± 2 years; 64 ± 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 ± 3 years; 65 ± 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat. Results The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 ± 0.1 vs. 2.4 ± 0.2; P = 0.27, respectively), but reduced FVC responses to mental stress (1.5 ± 0.2 vs. 0.8 ± 0.2 units; P = 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 ± 0.1 vs. Gln27Gln = 2.1 ± 0.1 units; P = 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 ± 0.4 vs. 1.0 ± 0.3 units; P = 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 ± 0.4 vs. 1.2 ± 0.4; P = 0.66, respectively). Conclusion These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the β2-adrenoceptor gene.