10 resultados para Equipment, Tubes Tracheal
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of 1/4, 1/2, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 degrees C. For mass velocities higher than 200 kg/m(2)s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m(2)s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The theoretical E-curve for the laminar flow of non-Newtonian fluids in circular tubes may not be accurate for real tubular systems with diffusion, mechanical vibration, wall roughness, pipe fittings, curves, coils, or corrugated walls. Deviations from the idealized laminar flow reactor (LFR) cannot be well represented using the axial dispersion or the tanks-in-series models of residence time distribution (RTD). In this work, four RTD models derived from non-ideal velocity profiles in segregated tube flow are proposed. They were used to represent the RTD of three tubular systems working with Newtonian and pseudoplastic fluids. Other RTD models were considered for comparison. The proposed models provided good adjustments, and it was possible to determine the active volumes. It is expected that these models can be useful for the analysis of LFR or for the evaluation of continuous thermal processing of viscous foods.
Resumo:
Hydroquinone (HQ) is the main oxidative substance in cigarette smoke and a toxic product of benzene biotransformation. Although the respiratory tract is an inlet pathway of HQ exposure, its effect on airway muscle responsiveness has not been assessed. We thus investigated the effects of low dose in vivo HQ-exposure on tracheal responsiveness to a muscarinic receptor agonist. Male Swiss mice were exposed to aerosolised 5% ethanol/saline solution (HQ vehicle; control) or 0.04 ppm HQ (1 h/day for 5 days) and tracheal rings were collected 1 h after the last exposure. HQ exposure caused tracheal hyper-responsiveness to methacholine (MCh), which was abolished by mechanical removal of the epithelium. This hyperresponsiveness was not dependent on neutrophil infiltration, but on tumour necrosis factor (TNF) secretion by epithelial cells. This conclusion was based on the following data: (1) trachea from HQ-exposed mice presented a higher amount of TNF, which was abrogated following removal of the epithelium; (2) the trachea hyperresponsiveness and TNF levels were attenuated by in vivo chlorpromazine (CPZ) treatment, an inhibitor of TNF synthesis. The involvement of HQ-induced TNF secretion in trachea mast cell degranulation was also demonstrated by the partial reversion of tracheal hyperresponsiveness in sodium cromoglicate-treated animals, and the in vivo HQ-exposure-induced degranulation of trachea connective tissue and mucosal mast cells, which was reversed by CPZ treatment. Our data show that in vivo HQ exposure indirectly exacerbates the parasympathetic-induced contraction of airway smooth muscle cells, mediated by TNF secreted by tracheal epithelial cells, clearly showing the link between environmental HQ exposure and the reactivity of airways. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVE: To estimate the response in lung growth and vascularity after fetal endoscopic tracheal occlusion for severe congenital diaphragmatic hernia in the prediction of neonatal survival. METHODS: Between January 2006 and December 2010, fetal lung parameters (observed-to-expected lung-to-head ratio; observed-to-expected lung volume; and contralateral lung vascularization index) were evaluated before fetal tracheal occlusion and were evaluated longitudinally every 2 weeks in 72 fetuses with severe isolated congenital diaphragmatic hernia. Thirty-five fetuses underwent fetal endoscopic tracheal occlusion and 37 cases did not. RESULTS: Survival rate was significantly higher in the fetal endoscopic tracheal occlusion group (54.3%) than in the no fetal endoscopic tracheal occlusion group (5.4%, P<.01). Fetal endoscopic tracheal occlusion resulted in a significant improvement in fetal lung size and pulmonary vascularity when compared with fetuses that did not go to the fetal intervention (increase of the observed-to-expected lung-to-head ratio, observed-to-expected total lung volume, and contralateral pulmonary vascularization index 56.2% compared with 0.3%, 37.9% compared with 0.1%, and 98.6% compared with 0.0%, respectively; P<.01). Receiver operating characteristic curves indicated that the observed-to-expected total fetal lung volume was the single best predictor of neonatal survival before fetal endoscopic tracheal occlusion (cutoff 0.23, area under the curve [AUC] 0.88, relative risk 5.3, 95% confidence interval [CI] 1.4-19.7). However, the contralateral lung vascularization index at 4 weeks after fetal endoscopic tracheal occlusion was more accurate in the prediction of neonatal outcome (cutoff 24.0%, AUC 0.98, relative risk 9.9, 95% CI 1.5-66.9) with the combination of observed-to-expected lung volumes and contralateral lung vascularization index at 4 weeks being the best predictor of outcome (AUC 0.98, relative risk 16.6, 95% CI 2.5-112.3). CONCLUSION: Fetal endoscopic tracheal occlusion improves survival rate by increasing the lung size and pulmonary vascularity in fetuses with severe congenital diaphragmatic hernia. The pulmonary response after fetal endoscopic tracheal occlusion can be used to predict neonatal survival. (Obstet Gynecol 2012; 119: 93-101) DOI: 10.1097/AOG.0b013e31823d3aea
Resumo:
This paper presents an experimental study on two-phase flow patterns and pressure drop of R134a inside a 15.9 mm ID tube containing twisted-tape inserts. Experimental results were obtained in a horizontal test section for twisted-tape ratios of 3, 4, 9 and 14, mass velocities ranging from 75 to 250 kg/m(2) s and saturation temperatures of 5 and 15 degrees C. An unprecedented discussion on two-phase flow patterns inside tubes containing twisted-tape inserts is presented and the flow pattern effects on the frictional pressure drop are carefully discussed. Additionally, a new method to predict the frictional pressure drop during two-phase flow inside tubes containing twisted-tape inserts is proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective Severe pulmonary hypoplasia and pulmonary arterial hypertension are associated with reduced survival in congenital diaphragmatic hernia (CDH). We aimed to determine whether fetal endoscopic tracheal occlusion (FETO) improves survival in cases of severe isolated CDH. Methods Between May 2008 and July 2010, patients whose fetuses had severe isolated CDH (lung-to-head ratio < 1.0, liver herniation into the thoracic cavity and no other detectable anomalies) were assigned randomly to FETO or to no fetal intervention (controls). FETO was performed under maternal epidural anesthesia supplemented with fetal intramuscular anesthesia. Tracheal balloon placement was achieved with ultrasound guidance and fetoscopy between 26 and 30 weeks of gestation. All cases that underwent FETO were delivered by the EXIT procedure. Postnatal therapy was the same for both treated fetuses and controls. The primary outcome was survival to 6 months of age. Other maternal and neonatal outcomes were also evaluated. Results Twenty patients were enrolled randomly to FETO and 21 patients to standard postnatal management. The mean gestational age at randomization was similar in both groups (P = 0.83). Delivery occurred at 35.6 +/- 2.4 weeks in the FETO group and at 37.4 +/- 1.9 weeks in the controls (P < 0.01). In the intention-to-treat analysis, 10/20 (50.0%) infants in the FETO group survived, while 1/21 (4.8%) controls survived (relative risk (RR), 10.5 (95% CI, 1.5-74.7), P < 0.01). In the receivedtreatment analysis, 10/19 (52.6%) infants in the FETO group and 1/19 (5.3%) controls survived (RR, 10.0 (95% CI, 1.4-70.6) P < 0.01). Conclusion FETO improves neonatal survival in cases with isolated severe CDH. Copyright (C) 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
Abstract Background Measurements of hormonal concentrations by immunoassays using fluorescent tracer substance (Eu3+) are susceptible to the action of chemical agents that may cause alterations in its original structure. Our goal was to verify the effect of two types of anticoagulants in the hormone assays performed by fluorometric (FIA) or immunofluorometric (IFMA) methods. Methods Blood samples were obtained from 30 outpatients and were drawn in EDTA, sodium citrate, and serum separation Vacutainer®Blood Collection Tubes. Samples were analyzed in automatized equipment AutoDelfia™ (Perkin Elmer Brazil, Wallac, Finland) for the following hormones: Luteinizing hormone (LH), Follicle stimulating homone (FSH), prolactin (PRL), growth hormone (GH), Sex hormone binding globulin (SHBG), thyroid stimulating hormone (TSH), insulin, C peptide, total T3, total T4, free T4, estradiol, progesterone, testosterone, and cortisol. Statistical analysis was carried out by Kruskal-Wallis method and Dunn's test. Results No significant differences were seen between samples for LH, FSH, PRL and free T4. Results from GH, TSH, insulin, C peptide, SHBG, total T3, total T4, estradiol, testosterone, cortisol, and progesterone were significant different between serum and EDTA-treated samples groups. Differences were also identified between serum and sodium citrate-treated samples in the analysis for TSH, insulin, total T3, estradiol, testosterone and progesterone. Conclusions We conclude that the hormonal analysis carried through by FIA or IFMA are susceptible to the effects of anticoagulants in the biological material collected that vary depending on the type of assay.
Resumo:
This paper shows theoretical models (analytical formulations) to predict the mechanical behavior of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was developed the analytical formulations for a pressurized tube made of composite material with a single thick ply and only one lamination angle. For this case, the stress distribution and the displacement fields are investigated as function of different lamination angles and reinforcement volume fractions. The results obtained by the theoretical model are physic consistent and coherent with the literature information. After that, the previous formulations are extended in order to predict the mechanical behavior of a thick laminated tube. Both analytical formulations are implemented as a computational tool via Matlab code. The results obtained by the computational tool are compared to the finite element analyses, and the stress distribution is considered coherent. Moreover, the engineering computational tool is used to perform failure analysis, using different types of failure criteria, which identifies the damaged ply and the mode of failure.
Resumo:
Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.
Resumo:
We report on the formation of self-assembled meso-tetrakis (p-sulfonatofenyl) porphyrin (H2 TPP'S POT. 4-''IND. 4') tubes stabilized by gold nanoparticles (NPs) in basic solution and on their spectroscopic chareterization. The role of the gold NPs in the aggregation dynamics of free-base sulfonated porphyrin (H2TPP'S POT. 4-''IND. 4') is also investigated. The direct conjugation of the gold NPs to the H2TPPS4 molecule quenches the fluorescence intensity, while absorption peaks are blue-shifted, indicating predominant H-type aggregation. It is observed that porphyrin molecules adsorbed on the surface of the gold NP interact and form tubes of maximum diameter ∼1.5 μm and length >100 μm. Steady-state and time-resolved spectroscopic techniques confirm nonradiative energy transfer from porphyrin to gold NP.