2 resultados para Equação diferencial
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Esse artigo foi escrito para alunos de graduação e pós- graduação em Física e para alunos de Engenharia. Primeiramente mostramos como construir a equação diferencial não-linear de Korteweg e de Vries a partir das equações básicas da hidrodinâmica. Em seguida mostramos como resolvê-la obtendo as ondas denominadas de solitons.
Resumo:
Simulamos a separação dos componentes de uma mistura bifásica com a equação de Cahn-Hilliard. Esta equação contém intrincados termos não lineares e derivadas de alta ordem. Além disso, a delgada região de transição entre os componentes da mistura requer muita resolução. Assim, determinar a solução numérica da equação de Cahn-Hilliard não é uma tarefa fácil, principalmente em três dimensões. Conseguimos a resolução exigida no tempo usando uma discretização semi-implícita de segunda ordem. No espaço, obtemos a precisão requerida utilizando malhas refinadas localmente com a estratégia AMR. Essas malhas se adaptam dinamicamente para recobrir a região de transição. O sistema linear proveniente da discretização é solucionado por intermédio de técnicas multinível-multigrid.