3 resultados para Environmental Relationships
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The evolution of elongated body shapes in vertebrates has intrigued biologists for decades and is particularly recurrent among squamates. Several aspects might explain how the environment influences the evolution of body elongation, but climate needs to be incorporated in this scenario to evaluate how it contributes to morphological evolution. Climatic parameters include temperature and precipitation, two variables that likely influence environmental characteristics, including soil texture and substrate coverage, which may define the selective pressures acting during the evolution of morphology. Due to development of geographic information system (GIS) techniques, these variables can now be included in evolutionary biology studies and were used in the present study to test for associations between variation in body shape and climate in the tropical lizard family Gymnophthalmidae. We first investigated how the morphological traits that define body shape are correlated in these lizards and then tested for associations between a descriptor of body elongation and climate. Our analyses revealed that the evolution of body elongation in Gymnophthalmidae involved concomitant changes in different morphological traits: trunk elongation was coupled with limb shortening and a reduction in body diameter, and the gradual variation along this axis was illustrated by less-elongated morphologies exhibiting shorter trunks and longer limbs. The variation identified in Gymnophthalmidae body shape was associated with climate, with the species from more arid environments usually being more elongated. Aridity is associated with high temperatures and low precipitation, which affect additional environmental features, including the habitat structure. This feature may influence the evolution of body shape because contrasting environments likely impose distinct demands for organismal performance in several activities, such as locomotion and thermoregulation. The present study establishes a connection between morphology and a broader natural component, climate, and introduces new questions about the spatial distribution of morphological variation among squamates.
Resumo:
Congenital heart disease (CHD) occurs in similar to 1% of newborns. CHD arises from many distinct etiologies, ranging from genetic or genomic variation to exposure to teratogens, which elicit diverse cell and molecular responses during cardiac development. To systematically explore the relationships between CHD risk factors and responses, we compiled and integrated comprehensive datasets from studies of CHD in humans and model organisms. We examined two alternative models of potential functional relationships between genes in these datasets: direct convergence, in which CHD risk factors significantly and directly impact the same genes and molecules and functional convergence, in which risk factors significantly impact different molecules that participate in a discrete heart development network. We observed no evidence for direct convergence. In contrast, we show that CHD risk factors functionally converge in protein networks driving the development of specific anatomical structures (e.g., outflow tract, ventricular septum, and atrial septum) that are malformed by CHD. This integrative analysis of CHD risk factors and responses suggests a complex pattern of functional interactions between genomic variation and environmental exposures that modulate critical biological systems during heart development.
Resumo:
We provide a detailed account of the spatial structure of the Brazilian sardine (Sardinella brasiliensis) spawning and nursery habitats, using ichthyoplankton data from nine surveys (1976-1993) covering the Southeastern Brazilian Bight (SBB). The spatial variability of sardine eggs and larvae was partitioned into predefined spatial-scale classes (broad scale, 200-500 km; medium scale, 50-100 km; and local scale, <50 km). The relationship between density distributions at both developmental stages and environmental descriptors (temperature and salinity) was also explored within these spatial scales. Spatial distributions of sardine eggs were mostly structured on medium and local scales, while larvae were characterized by broad-and medium-scale distributions. Broad-and medium-scale surface temperatures were positively correlated with sardine densities, for both developmental stages. Correlations with salinity were predominantly negative and concentrated on a medium scale. Broad-scale structuring might be explained by mesoscale processes, such as pulsing upwelling events and Brazil Current meandering at the northern portion of the SBB, while medium-scale relationships may be associated with local estuarine outflows. The results indicate that processes favouring vertical stability might regulate the spatial extensions of suitable spawning and nursery habitats for the Brazilian sardine.