3 resultados para Environmental Geology|Paleontology|Paleoecology

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water vapor conductance (G(H20)) of the neosauropod eggs from the Lower Cretaceous Sanagasta nesting site in La Rioja Province, Argentina, was examined and compared with other Cretaceous Argentinean oological material. The 2900 mgH(2)O/day.Torr G(H2O) of the Sanagasta eggshells confirms an extremely moist nesting environment and supports field observations of dug-out nests in a geothermal setting. The observed thinning of the outer eggshell surface during incubation increases gas conductance and concomitantly decreases eggshell mechanical resistance during the late ontogenetic stages, thus facilitating embryonic development and hatching. The Sanagasta and Entre Rios Province faveoloolithid eggs display the highest and comparable 61120 values and share several morphological and diagenetic characters, indicating comparable nesting strategy in geothermal settings. However, the faveoloolithid Yamintie and La Pampa Province specimens cluster together with lower G(H20) values closer to the megaloolithid eggs. The Gnu) of the megaloolithid egg Megaloolithus patagonicus was reconsidered and new results are now congruent with other reported megaloolithid GH2O values. Additionally, we hypothesize that V-shaped pore canals of M. patagonicus, which upper sections reach only the top third or half eggshell thickness and, a wider section in the middle would not compromise the overall egg mechanical resistance like vertical pores connecting directly the outer to the inner eggshell surfaces. Such pore spatial arrangement and geometry would enhance, as the eggshell thins during incubation, a greater G(H2O), G(O2) and G(CO2) and facilitate embryonic development in high moisture nesting contents. Overall, data suggests that neosauropod nesting and brooding behaviors were dependent on elevated moisture nesting environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, some TDEM (Time Domain Electromagnetic) results at USP (University of Sao Paulo) campus in Sao Paulo city, Brazil, are presented. The data were acquired focusing on two mains objectives: (i) to map geoelectrical stratigraphy of Sao Paulo sedimentary basin, emphasizing on hydrogeological studies about sedimentary and crystalline aquifers, and (ii) to analyze the viability of TDEM data acquisition use in urban environment. The study area is located in Sao Paulo basin border, characterized by Resende and Sao Paulo formations, which are constituted by sand-clays sediments over a granite-gneissic basement. Two equipments were used in order to acquire database: Protem47 (low power), and Protem57-MK2 (high power). Capacitive noise affect obtained data with Protem47 due to the presence of metal pipes buried at IAG/USP (Institute of Astronomy, Geophysics, and Atmospheric Science) test site at USP. On the other hand, capacitive noise did not affect acquired data with Protem57-MK2, and the data present high signal to noise ratio. Surveys helped in determining sedimentary and crystalline aquifers, characterized by a fracture zone with water inside basin basement (conductive zone). Results show good agreement with local geology obtained from lithological boreholes located in the study areas. Moreover, it shows that TDEM method can be used in urban environments with a countless potential in hydrogeological studies, offering great reliability. Studies showed that main TDEM-method limitation at USP was the lack of space for opening the transmitter loop. Results are very promising and open new perspectives for TDEM-method use in urban environments as this area remains unexplored. (C) 2011 Elsevier B.V. All rights reserved.