1 resultado para Energy partitioning
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Ruthenium complexes including nitrosyl or nitrite complexes are particularly interesting because they can not only scavenge but also release nitric oxide in a controlled manner, regulating the NO-level in vivo. The judicious choice of ligands attached to the [RuNO] core has been shown to be a suitable strategy to modulate NO reactivity in these complexes. In order to understand the influence of different equatorial ligands on the electronic structure of the Ru-NO chemical bonding, and thus on the reactivity of the coordinated NO, we propose an investigation of the nature of the Ru-NO chemical bond by means of energy decomposition analysis (EDA), considering tetraamine and tetraazamacrocycles as equatorial ligands, prior to and after the reduction of the {RuNO}(6) moiety by one electron. This investigation provides a deep insight into the Ru-NO bonding situation, which is fundamental in designing new ruthenium nitrosyl complexes with potential biological applications.