22 resultados para Energy dispersive spectrometry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The diffusive gradients in thin films (DGT) technique has shown enormous potential for labile metal monitoring in fresh water due to the preconcentration, time-integrated, matrix interference removal and speciation analytical features. In this work, the coupling of energy dispersive X-ray fluorescence (EDXRF) with paper-based DGT devices was evaluated for the direct determination of Mn, Co. Ni, Cu, Zn and Pb in fresh water. The DGT samplers were assembled with cellulose (Whatman 3 MM chromatography paper) as the diffusion layer and a cellulose phosphate ion exchange membrane (Whatman P 81 paper) as the binding agent. The diffusion coefficients of the analytes on 3 MM chromatography paper were calculated by deploying the DGT samplers in synthetic solutions containing 500 mu g L-1 of Mn. Co, Ni, Cu, Zn and Pb (4 L at pH 5.5 and ionic strength at 0.05 mol L-1). After retrieval, the DGT units were disassembled and the P81 papers were dried and analysed by EDXRF directly. The 3 MM chromatographic paper diffusion coefficients of the analytes ranged from 1.67 to 1.87 x 10(-6) cm(2) s(-1). The metal retention and phosphate group homogeneities on the P81 membrane was studied by a spot analysis with a diameter of 1 mm. The proposed approach (DGT-EDXRF coupling) was applied to determine the analytes at five sampling sites (48 h in situ deployment) on the Piracicaba river basin, and the results (labile fraction) were compared with 0.45 mu m dissolved fractions determined by synchrotron radiation-excited total reflection X-ray fluorescence (SR-TXRF). The limits of detection of DGT-EDXRF coupling for the analytes (from 7.5 to 26 mu g L-1) were similar to those obtained by the sensitive SR-TXRF technique (3.8 to 9.1 mu g L-1). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background The application and better understanding of traditional and new breast tumor biomarkers and prognostic factors are increasing due to the fact that they are able to identify individuals at high risk of breast cancer, who may benefit from preventive interventions. Also, biomarkers can make possible for physicians to design an individualized treatment for each patient. Previous studies showed that trace elements (TEs) determined by X-Ray Fluorescence (XRF) techniques are found in significantly higher concentrations in neoplastic breast tissues (malignant and benign) when compared with normal tissues. The aim of this work was to evaluate the potential of TEs, determined by the use of the Energy Dispersive X-Ray Fluorescence (EDXRF) technique, as biomarkers and prognostic factors in breast cancer. Methods By using EDXRF, we determined Ca, Fe, Cu, and Zn trace elements concentrations in 106 samples of normal and breast cancer tissues. Cut-off values for each TE were determined through Receiver Operating Characteristic (ROC) analysis from the TEs distributions. These values were used to set the positive or negative expression. This expression was subsequently correlated with clinical prognostic factors through Fisher’s exact test and chi-square test. Kaplan Meier survival curves were also evaluated to assess the effect of the expression of TEs in the overall patient survival. Results Concentrations of TEs are higher in neoplastic tissues (malignant and benign) when compared with normal tissues. Results from ROC analysis showed that TEs can be considered a tumor biomarker because, after establishing a cut-off value, it was possible to classify different tissues as normal or neoplastic, as well as different types of cancer. The expression of TEs was found statistically correlated with age and menstrual status. The survival curves estimated by the Kaplan-Meier method showed that patients with positive expression for Cu presented a poor overall survival (p < 0.001). Conclusions This study suggests that TEs expression has a great potential of application as a tumor biomarker, once it was revealed to be an effective tool to distinguish different types of breast tissues and to identify the difference between malignant and benign tumors. The expressions of all TEs were found statistically correlated with well-known prognostic factors for breast cancer. The element copper also showed statistical correlation with overall survival.
Resumo:
Recently, a new ternary phase was discovered in the Ti-Si-B system, located near the Ti6Si2B composition. The present study concerns the preparation of titanium alloys that contain such phase mixed with α-titanium and other intermetallic phases. High-purity powders were initially processed in a planetary ball-mill under argon atmosphere with Ti-18Si-6B and Ti-7.5Si-22.5B at. (%) initial compositions. Variation of parameters such as rotary speed, time, and ball diameters were adopted. The as-milled powders were pressureless sintered and hot pressed. Both the as-milled and sintered materials were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Sintered samples have presented equilibrium structures formed mainly by the α-Ti+Ti6Si2B+Ti5Si3+TiB phases. Silicon and boron peaks disappear throughout the milling processes, as observed in the powder diffraction data. Furthermore, an iron contamination of up to 10 at. (%) is measured by X-ray spectroscopy analysis on some regions of the sintered samples. Density, hardness and tribological results for these two compositions are also presented here.
Resumo:
In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An exact expression is derived for the time-averaged electromagnetic energy within a magneto-dielectric coated sphere, which is irradiated by a plane and time-harmonic electromagnetic wave. Both the spherical shell and core are considered to be dispersive and lossy, with a realistic dispersion relation of an isotropic split-ring resonator metamaterial. We obtain analytical expressions for the stored electromagnetic energies inside the core and the shell separately and calculate their contributions to the total average energy density. The stored electromagnetic energy is calculated for two situations involving a metamaterial coated sphere: a dielectric shell and dispersive metamaterial core, and vice versa. An explicit relation between the stored energy and the optical absorption efficiency is also obtained. We show that the stored electromagnetic energy is an observable sensitive to field interferences responsible for the Fano effect. This result, together with the fact that the Fano effect is more likely to occur in metamaterials with negative refraction, suggest that our findings may be explored in applications.
Resumo:
In this study, a novel material for the electrochemical determination of bisphenol A using a nanocomposite based on multi-walled carbon nanotubes modified with antimony nanoparticles has been investigated. The morphology, structure, and electrochemical performance of the nanocomposite electrodes were characterised by field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and cyclic voltammetry. A scan rate study and electrochemical impedance spectroscopy showed that the bisphenol A oxidation product is adsorbed on nanocomposite electrode surface. Differential pulse voltammetry in phosphate buffer solution at pH 6, allowed the development of a method to determine bisphenol A levels in the range of 0.5-5.0 mu mol L-1, with a detection limit of 5.24 nmol L-1 (1.19 mu g L-1). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Portable system of energy dispersive X-ray fluorescence was used to determine the elemental composition of 68 pottery fragments from Sambaqui do Bacanga, an archeological site in Sao Luis, Maranhao, Brazil. This site was occupied from 6600 BP until 900 BP. By determining the element chemical composition of those fragments, it was possible to verify the existence of engobe in 43 pottery fragments. Obtained from two-dimensional graphs and hierarchical cluster analysis performed in fragments of stratigraphies from surface and 113-cm level, and 10 to 20, 132 and 144-cm level, it was possible to group these fragments in five distinct groups, according to their stratigraphies. The results of data grouping (two-dimensional graphics) are in agreement with hierarchical cluster analysis by Ward method. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Objectives: To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride. Methods: Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm circle divide x 4 mm) were mirror-polished and treated according to 6 groups (n = 6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (alpha = .05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (alpha = .05). Results: cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29 +/- 0.55/2.33 +/- 0.17; IT, 2.24 +/- 0.46/2.02 +/- 0.38; IFT, 2.22 +/- 0.53/1.95 +/- 0.36; BW, 2.22 +/- 0.42/3.76 +/- 0.45; BT, 2.27 +/- 0.55/16.05 +/- 3.25; BFT, 2.27 +/- 0.51/22.39 +/- 5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79 +/- 0.25/2.01 +/- 0.25; IT, 1.61 +/- 0.13/1.74 +/- 0.19; IFT, 1.92 +/- 0.39/2.29 +/- 0.51; BW, 2.00 +/- 0.71/2.05 +/- 0.43; BT, 2.37 +/- 0.86/11.17 +/- 2.29; BFT, 1.83 +/- 0.50/15.73 +/- 1.78. No significant differences were seen after immersions (p > .05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p < .01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces. Conclusions: Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a mono-chromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of this study was to compare the correspondence between gap formation and apical microleakage in root canals filled with epoxy resin-based (AH Plus) combined or not with resinous primer or with a dimethacrylate-based root canal sealer (Epiphany). Material and Methods: Thirty-nine lower single-rooted human premolars were filled by the lateral condensation technique (LC) and immersed in a 50-wt% aqueous silver nitrate solution at 37 degrees C (24 h). After longitudinal sectioning, epoxy resin replicas were made from the tooth specimens. Both the replicas and the specimens were prepared for scanning electron microscopy (SEM). The gaps were observed in the replicas. Apical microleakage was detected in the specimens by SEM/energy dispersive spectroscopy (SEM/EDS). The data were analyzed statistically using an Ordinal Logistic Regression model and Analysis of Correspondence (alpha=0.05). Results: Epiphany presented more regions containing gaps between dentin and sealer (p<0.05). There was correspondence between the presence of gaps and microleakage (p<0.05). Microleakage was similar among the root-filling materials (p>0.05). Conclusions: The resinous primer did not improve the sealing ability of AH Plus sealer and the presence of gaps had an effect on apical microleakage for all materials.
Resumo:
In this paper we report the electrosynthesis of PVA-protected PtCo films (PVA = poly(vinylalcohol)) and their activities towards the oxygen reduction reaction (ORR). PtCo electrodeposits were potentiostatically obtained in the presence and absence of PVA at distinct potentials. The film morphology and composition were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), which revealed that the use of PVA in the electrodeposition of PtCo films was decisive to achieve better film composition control. Cyclic voltammetry for PVA-protected PtCo films showed that the electrochemical surface area is dependent on the electrodeposition potentials and suggested different adsorption strengths of oxygen-containing species. Films produced in the presence of PVA presented the following activity order towards ORR as a function of the electrodeposition potential (vs. Ag/AgCl): -0.9 V> -0.8 V> -1.0 V> -0.7 V. In contrast, PtCo films electrodeposited in the absence of PVA displayed very similar activities regardless of the electrodeposition potential. The simplicity of the electrodeposition method combined with its effectiveness enabled the production of "model electrodes" for investigating the fundamental aspects of the reactions taking place in the fuel cell cathodes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.
Resumo:
Aim To compare the changes in the surface structure and elemental distribution, as well as the percentage of ion release, of four calcium silicate-containing endodontic materials with a well-established epoxy resin-based sealer, submitted to a solubility test. Methodology Solubility of AH Plus, iRoot SP, MTA Fillapex, Sealapex and MTA-Angelus (MTA-A) was tested according to ANSI/ADA Specification 57. The deionized water used in the solubility test was submitted to atomic absorption spectrophotometry to determine and quantify Ca2+, Na+, K+, Zn2+, Ni2+ and Pb2+ ions release. In addition, the outer and inner surfaces of nonsubmitted and submitted samples of each material to the solubility test were analysed by means of scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDX). Statistical analysis was performed by using one-way anova and Tukeys post hoc tests (a = 0.05). Results Solubility results, in percentage, sorted in an increasing order were -1.24 +/- 0.19 (MTA-A), 0.28 +/- 0.08 (AH Plus), 5.65 +/- 0.80 (Sealapex), 14.89 +/- 0.73 (MTA Fillapex) and 20.64 +/- 1.42 (iRoot SP). AH Plus and MTA-A were statistically similar (P > 0.05), but different from the other materials (P < 0.05). High levels of Ca2+ ion release were observed in all groups except AH Plus sealer. MTA-A also had the highest release of Na2+ and K+ ions. Zn+2 ion release was observed only with AH Plus and Sealapex sealers. After the solubility test, all surfaces had morphological changes. The loss of matrix was evident and the filler particles were more distinguishable. EDX analysis displayed high levels of calcium and carbon at the surface of Sealapex, MTA Fillapex and iRoot SP. Conclusions AH Plus and MTA-A were in accordance with ANSI/ADAs requirements regarding solubility whilst iRoot SP, MTA Fillapex and Sealapex did not fulfil ANSI/ADAs protocols. High levels of Ca2+ ion release were observed in all materials except AH Plus. SEM/EDX analysis revealed that all samples had morphological changes in both outer and inner surfaces after the solubility test. High levels of calcium and carbon were also observed at the surface of all materials except AH Plus and MTA-A.
Resumo:
The oxygen reduction reaction (ORR) was studied in KOH electrolyte on carbon supported epsilon-manganese dioxide (epsilon-MnO2/C). The epsilon-MnO2/C catalyst was prepared via thermal decomposition of manganese nitrate and carbon powder (Vulcan XC-72) mixtures. X-ray powder diffraction (XRD) measurements were performed in order to determine the crystalline structure of the resulting composite, while energy dispersive X-ray analysis (EDX) was used to evaluate the chemical composition of the synthesized material. The electrochemical studies were conducted using cyclic voltammetry (CV) and quasi-steady state polarization measurements carried out with an ultra thin layer rotating ring/disk electrode (RRDE) configuration. The electrocatalytic results obtained for 20% (w/w) Pt/C (E-TEK Inc., USA) and alpha-MnO2/C for the ORR, considered as one of the most active manganese oxide based catalyst for the ORR in alkaline media, were included for comparison. The RRDE results revealed that the ORR on the MnO2 catalysts proceeds preferentially through the complete 4e(-) reduction pathway via a 2 plus 2e(-) reduction process involving hydrogen peroxide as an intermediate. A benchmark close to the performance of 20% (w/w) Pt/C (E-TEK Inc., USA) was observed for the epsilon-MnO2/C material in the kinetic control region, superior to the performance of alpha-MnO2/C, but a higher amount of HO2- was obtained when epsilon-MnO2/C was used as catalyst. The higher production of hydrogen peroxide on epsilon-MnO2/C was related to the presence of structural defects, typical of this oxide, while the better catalytic performance in the kinetic control region compared to alpha-MnO2/C was related with the higher electrochemical activity for the proton insertion kinetics, which is a structure sensitive process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Er3+-Yb3+ co-doped MgAl2O4 phosphor powders have been prepared by the combustion method. The phosphor powders are well characterized by X-ray diffraction (XRD) and energy dispersive (EDX) techniques. The absorption spectrum of Er3+/Er3+-Yb3+ doped/co-doped phosphor powder has been recorded in the UV-Vis-NIR region of the electro-magnetic spectrum. The evidence for indirect pumping under 980 nm excitation of Er3+ from Yb3+ was observed in the MgAl2O4 matrix material. Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process in MgAl2O4:Er3+ phosphor. Three defect centres were identified in irradiated phosphor by ESR measurements which were carried out at room temperature and these were assigned to an O- ion and F+ centres. O- ion (hole centre) appears to correlate with the low temperature TSL peak at 210 A degrees C and one of the F+ centres (electron centre) is related to the high temperature peak at 460 A degrees C.