24 resultados para Energy dispersive X ray analysis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusive gradients in thin films (DGT) technique has shown enormous potential for labile metal monitoring in fresh water due to the preconcentration, time-integrated, matrix interference removal and speciation analytical features. In this work, the coupling of energy dispersive X-ray fluorescence (EDXRF) with paper-based DGT devices was evaluated for the direct determination of Mn, Co. Ni, Cu, Zn and Pb in fresh water. The DGT samplers were assembled with cellulose (Whatman 3 MM chromatography paper) as the diffusion layer and a cellulose phosphate ion exchange membrane (Whatman P 81 paper) as the binding agent. The diffusion coefficients of the analytes on 3 MM chromatography paper were calculated by deploying the DGT samplers in synthetic solutions containing 500 mu g L-1 of Mn. Co, Ni, Cu, Zn and Pb (4 L at pH 5.5 and ionic strength at 0.05 mol L-1). After retrieval, the DGT units were disassembled and the P81 papers were dried and analysed by EDXRF directly. The 3 MM chromatographic paper diffusion coefficients of the analytes ranged from 1.67 to 1.87 x 10(-6) cm(2) s(-1). The metal retention and phosphate group homogeneities on the P81 membrane was studied by a spot analysis with a diameter of 1 mm. The proposed approach (DGT-EDXRF coupling) was applied to determine the analytes at five sampling sites (48 h in situ deployment) on the Piracicaba river basin, and the results (labile fraction) were compared with 0.45 mu m dissolved fractions determined by synchrotron radiation-excited total reflection X-ray fluorescence (SR-TXRF). The limits of detection of DGT-EDXRF coupling for the analytes (from 7.5 to 26 mu g L-1) were similar to those obtained by the sensitive SR-TXRF technique (3.8 to 9.1 mu g L-1). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The application and better understanding of traditional and new breast tumor biomarkers and prognostic factors are increasing due to the fact that they are able to identify individuals at high risk of breast cancer, who may benefit from preventive interventions. Also, biomarkers can make possible for physicians to design an individualized treatment for each patient. Previous studies showed that trace elements (TEs) determined by X-Ray Fluorescence (XRF) techniques are found in significantly higher concentrations in neoplastic breast tissues (malignant and benign) when compared with normal tissues. The aim of this work was to evaluate the potential of TEs, determined by the use of the Energy Dispersive X-Ray Fluorescence (EDXRF) technique, as biomarkers and prognostic factors in breast cancer. Methods By using EDXRF, we determined Ca, Fe, Cu, and Zn trace elements concentrations in 106 samples of normal and breast cancer tissues. Cut-off values for each TE were determined through Receiver Operating Characteristic (ROC) analysis from the TEs distributions. These values were used to set the positive or negative expression. This expression was subsequently correlated with clinical prognostic factors through Fisher’s exact test and chi-square test. Kaplan Meier survival curves were also evaluated to assess the effect of the expression of TEs in the overall patient survival. Results Concentrations of TEs are higher in neoplastic tissues (malignant and benign) when compared with normal tissues. Results from ROC analysis showed that TEs can be considered a tumor biomarker because, after establishing a cut-off value, it was possible to classify different tissues as normal or neoplastic, as well as different types of cancer. The expression of TEs was found statistically correlated with age and menstrual status. The survival curves estimated by the Kaplan-Meier method showed that patients with positive expression for Cu presented a poor overall survival (p < 0.001). Conclusions This study suggests that TEs expression has a great potential of application as a tumor biomarker, once it was revealed to be an effective tool to distinguish different types of breast tissues and to identify the difference between malignant and benign tumors. The expressions of all TEs were found statistically correlated with well-known prognostic factors for breast cancer. The element copper also showed statistical correlation with overall survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray test is a precise, fast and non-destructive method to detect mechanical damage in seeds. In the present study, the efficiency of X-ray analysis in identifying the extent of mechanical damage in sweet corn seeds and its relationship with germination and vigor was evaluated. Hybrid 'SWB 551' (sh2) seeds with round (R) and flat (F) shapes were classified as large (L), medium (M1, M2 and M3) and small (S), using sieves with round and oblong screens. After artificial exposure to different levels of damage (0, 1, 3, 5 and 7 impacts), seeds were X-rayed (15 kV, 5 min) and submitted to germination (25 °C/5 days) and cold (10 °C/7 days) tests. Digital images of normal and abnormal seedlings and ungerminated seeds from germination and cold tests were jointly analyzed with the seed X-ray images. Results showed that damage affecting the embryonic axis resulted in abnormal seedlings or dead seeds in the germination and cold tests. The X-ray analysis is efficient for identifying mechanical damage in sweet corn seeds, allowing damage severity to be associated with losses in germination and vigor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen reduction reaction (ORR) was studied in KOH electrolyte on carbon supported epsilon-manganese dioxide (epsilon-MnO2/C). The epsilon-MnO2/C catalyst was prepared via thermal decomposition of manganese nitrate and carbon powder (Vulcan XC-72) mixtures. X-ray powder diffraction (XRD) measurements were performed in order to determine the crystalline structure of the resulting composite, while energy dispersive X-ray analysis (EDX) was used to evaluate the chemical composition of the synthesized material. The electrochemical studies were conducted using cyclic voltammetry (CV) and quasi-steady state polarization measurements carried out with an ultra thin layer rotating ring/disk electrode (RRDE) configuration. The electrocatalytic results obtained for 20% (w/w) Pt/C (E-TEK Inc., USA) and alpha-MnO2/C for the ORR, considered as one of the most active manganese oxide based catalyst for the ORR in alkaline media, were included for comparison. The RRDE results revealed that the ORR on the MnO2 catalysts proceeds preferentially through the complete 4e(-) reduction pathway via a 2 plus 2e(-) reduction process involving hydrogen peroxide as an intermediate. A benchmark close to the performance of 20% (w/w) Pt/C (E-TEK Inc., USA) was observed for the epsilon-MnO2/C material in the kinetic control region, superior to the performance of alpha-MnO2/C, but a higher amount of HO2- was obtained when epsilon-MnO2/C was used as catalyst. The higher production of hydrogen peroxide on epsilon-MnO2/C was related to the presence of structural defects, typical of this oxide, while the better catalytic performance in the kinetic control region compared to alpha-MnO2/C was related with the higher electrochemical activity for the proton insertion kinetics, which is a structure sensitive process. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portable system of energy dispersive X-ray fluorescence was used to determine the elemental composition of 68 pottery fragments from Sambaqui do Bacanga, an archeological site in Sao Luis, Maranhao, Brazil. This site was occupied from 6600 BP until 900 BP. By determining the element chemical composition of those fragments, it was possible to verify the existence of engobe in 43 pottery fragments. Obtained from two-dimensional graphs and hierarchical cluster analysis performed in fragments of stratigraphies from surface and 113-cm level, and 10 to 20, 132 and 144-cm level, it was possible to group these fragments in five distinct groups, according to their stratigraphies. The results of data grouping (two-dimensional graphics) are in agreement with hierarchical cluster analysis by Ward method. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g(-1), which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biological system for the biosynthesis of nanoparticles (NPs) and uptake of copper from wastewater, using dead biomass of Hypocrea lixii was analyzed and described for the first time. The equilibrium and kinetics investigation of the biosorption of copper onto dead, dried and live biomass of fungus were performed as a function of initial metal concentration, pH, temperature, agitation and inoculum volume. The high biosorption capacity was observed for dead biomass, completed within 60 min of contact, at pH 5.0, temperature of 40 °C and agitation speed of 150 rpm with a maximum copper biosorption of 19.0 mg g(-1). The equilibrium data were better described using the Langmuir isotherm and kinetic analysis indicated that copper biosorption follows a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the fungus were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). NPs were mainly spherical, with an average size of 24.5 nm, and were synthesized extracellularly. The X-ray diffraction (XRD) analysis confirms the presence of metallic copper particles. Infrared spectroscopy (FTIR) study revealed that the amide groups interact with the particles, which was accountable for the stability of NPs. This method further confirmed the presence of proteins as stabilizing and capping agents surrounding the copper NPs. These studies demonstrate that dead biomass of Hypocrea lixii provides an economic and technically feasible option for bioremediation of wastewater and is a potential candidate for industrial-scale production of copper NPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride. Methods: Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm circle divide x 4 mm) were mirror-polished and treated according to 6 groups (n = 6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (alpha = .05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (alpha = .05). Results: cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29 +/- 0.55/2.33 +/- 0.17; IT, 2.24 +/- 0.46/2.02 +/- 0.38; IFT, 2.22 +/- 0.53/1.95 +/- 0.36; BW, 2.22 +/- 0.42/3.76 +/- 0.45; BT, 2.27 +/- 0.55/16.05 +/- 3.25; BFT, 2.27 +/- 0.51/22.39 +/- 5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79 +/- 0.25/2.01 +/- 0.25; IT, 1.61 +/- 0.13/1.74 +/- 0.19; IFT, 1.92 +/- 0.39/2.29 +/- 0.51; BW, 2.00 +/- 0.71/2.05 +/- 0.43; BT, 2.37 +/- 0.86/11.17 +/- 2.29; BFT, 1.83 +/- 0.50/15.73 +/- 1.78. No significant differences were seen after immersions (p > .05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p < .01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces. Conclusions: Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report the electrosynthesis of PVA-protected PtCo films (PVA = poly(vinylalcohol)) and their activities towards the oxygen reduction reaction (ORR). PtCo electrodeposits were potentiostatically obtained in the presence and absence of PVA at distinct potentials. The film morphology and composition were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), which revealed that the use of PVA in the electrodeposition of PtCo films was decisive to achieve better film composition control. Cyclic voltammetry for PVA-protected PtCo films showed that the electrochemical surface area is dependent on the electrodeposition potentials and suggested different adsorption strengths of oxygen-containing species. Films produced in the presence of PVA presented the following activity order towards ORR as a function of the electrodeposition potential (vs. Ag/AgCl): -0.9 V> -0.8 V> -1.0 V> -0.7 V. In contrast, PtCo films electrodeposited in the absence of PVA displayed very similar activities regardless of the electrodeposition potential. The simplicity of the electrodeposition method combined with its effectiveness enabled the production of "model electrodes" for investigating the fundamental aspects of the reactions taking place in the fuel cell cathodes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a novel material for the electrochemical determination of bisphenol A using a nanocomposite based on multi-walled carbon nanotubes modified with antimony nanoparticles has been investigated. The morphology, structure, and electrochemical performance of the nanocomposite electrodes were characterised by field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and cyclic voltammetry. A scan rate study and electrochemical impedance spectroscopy showed that the bisphenol A oxidation product is adsorbed on nanocomposite electrode surface. Differential pulse voltammetry in phosphate buffer solution at pH 6, allowed the development of a method to determine bisphenol A levels in the range of 0.5-5.0 mu mol L-1, with a detection limit of 5.24 nmol L-1 (1.19 mu g L-1). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver containing heavy metal oxide glasses and glass ceramics of the system WO3-SbPO4-PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonimce band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal:carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Root perforation represents an undesirable complication that may lead to an unfavorable prognosis. The aims of this study were to characterize and to compare the presence of calcium oxide (CaO) on the chemical composition of materials used for root perforation therapy: gray and white mineral trioxide aggregate (MTA) and Portland cement (PC), gray MTA+5%CaO and gray MTA+10%CaO. The last two materials were analyzed to evaluate the increase of CaO in the final sample. CaO alone was used as a standard. Eighteen polyethylene tubes with an internal diameter of 3 mm and 3 mm in length were prepared, filled and then transferred to a chamber with 95% relative humidity and a temperature of 37ºC. The chemical compounds (particularly CaO) and the main components were analyzed by energy-dispersive X-ray microanalysis (EDX). EDX revealed the following concentrations of CaO: gray MTA: 59.28%, white MTA: 63.09%; PC: 72.51%; gray MTA+5%CaO: 63.48% and gray MTA+10%CaO: 67.55%. The tested materials presented different concentrations of CaO. Even with an increase of 5 and 10% CaO in gray MTA, the CaO levels found in the MTA samples were lower than those found in PC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In accelerating dark energy models, the estimates of the Hubble constant, Ho, from Sunyaev-Zerdovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (Omega(M)), the curvature (Omega(K)) and the equation of state parameter GO. In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical beta model obtained through the SZE/X-ray technique, we constrain Ho in the framework of a general ACDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter omega = p(x)/rho(x). In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BA()) and the (MB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ACDM model H-0 = 74(-4.0)(+5.0) km s(-1) Mpc(-1) (1 sigma) whereas for a fiat universe with constant equation of state parameter we find H-0 = 72(-4.0)(+5.5) km s(-1) Mpc(-1)(1 sigma). By assuming that galaxy clusters are described by a spherical beta model these results change to H-0 = 6(-7.0)(+8.0) and H-0 = 59(-6.0)(+9.0) km s(-1) Mpc(-1)(1 sigma), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Bubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a, flat ACDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H-0 estimates for this combination of data.