16 resultados para Endurance athletes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background and Study Aim: The grip strength endurance is important for Brazilian Jiu-Jitsu (BJJ). Thus, the aims of this study were: a) to test the reliability of two kimono grip strength tests named maximum static lift (MSL) and maximum number of repetitions (MNR) and b) to examine differences between elite and non-elite BJJ players in these tests. Material/Methods: Thirty BJJ players participated into two phases: "A" to test reliability and "B" to compare elite and non-elite. In phase A, twenty participants performed the MSL and, 15 min later, the MNR in two occasions with 24-h interval. In phase B, ten other BJJ practitioners (non-elite) and ten athletes (elite) performed the same tests. The intraclass correlation coefficient (ICC) two way fixed model (3,1), Bland-Altman plot and the limits of agreement were used to test reliability, correlation between the tests were evaluated by Pearson correlations and independent T test (P<0.05) was utilized to compare elite vs. non-elite. Results: The ICC was high for repeated measurements on different days of phase A (MSL: r=0.99 and MNR: r=0.97). Limits of agreement for time of suspension were -6.9 to 2.4-s, with a mean difference of -2.3 s (CI: -3.3 to -1.2-s), while for number of repetitions the limits of agreement were -2.9 to 2.3-rep, with a mean difference of -0.3-rep (CI: -0.9 to 0.3-rep). In phase B, elite presented better performance for both tests (P<0.05) compared to non-elite (56 +/- 10-s vs. 37 +/- 11-s in MSL and 15 +/- 4-rep vs. 8 +/- 3-rep in MNR). Moderate correlation were found between MSL and MNR for absolute values during test (r=0.475; p=0.034), and retest phases (r=0.489; p=0.029), while moderate and high correlations in the test (r=0.615; p=0.004) and retest phases (r=0.716; p=0.001) were found for relative values, respectively. Conclusions: These proposed tests are reliable and both static and dynamic grip strength endurance tests seem to differentiate BJJ athletes from different levels.
Resumo:
Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.
Resumo:
Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1a), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3 beta) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1a association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3 beta phosphorylation levels and glycogen content at 24?h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss. J. Cell. Physiol. 227: 29172926, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.
Resumo:
The objective was to determine the effects of carbohydrate (CHO) supplementation on exercise-induced hormone responses and post-training intramyocellular lipid stores (IMCL). Twenty-four elite male athletes (28.0 +/- 1.2 years) were randomized to receive CHO (maltodextrin solution) or zero energy placebo solution (control group). The high-intensity running protocol consisted of 10 x 800 m at 100% of the best 3000-m speed (Vm3 km) and 2 x 1000 m maximal bouts in the morning and a submaximal 10-km continuous easy running in the afternoon of day 9. IMCL concentrations were assessed by H-1-MRS before (-day 9) and after training (day 9) in soleus (SO) and tibialis anterior (TA) muscles. Blood hormones were also measured before, during, and post-exercise. The percent change (Delta%) in TA-IMCL was higher in the CHO group (47.9 +/- 24.5 IMCL/Cr) than in the control group (-1.7 +/- 13.1, respectively) (P=.04). Insulin concentrations were higher in the CHO group post-intermittent running compared to control (P=.02). Circulating levels of free fatty acids and GH were lower in the CHO group (P>.01). The decline in performance in the 2nd 1000-m bout was also attenuated in this group compared to control (P<.001 and P=.0035, respectively). The hormonal milieu (higher insulin and lower GH levels) in the CHO group, together with unchanged free fatty acid levels, probably contributed to the increased IMCL stores. This greater energy storage capacity may have improved post-exercise recovery and thus prevented performance deterioration. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this study, the physiological responses and rate of perceived exertion in Brazilian jiu-jitsu fighters submitted to a combat simulation were investigated. Venous blood samples and heart rate were taken from twelve male Brazilian jiu-jitsu athletes (27.1+/-2.7 yrs, 75.4+/-8.8 kg, 174.9+/-4.4 cm, 9.2+/-2.4% fat), at rest, after a warm-up (ten minutes), immediately after the fight simulation (seven minutes) and after recovery (fourteen minutes). After the combat the rate of perceived exertion was collected. The combat of the Brazilian jiu-jitsu fighters did not change blood concentrations of glucose, triglycerides, total cholesterol, low density lipoprotein and very low density lipoprotein, ureia and ammonia. However, blood levels of high density lipoprotein were significantly higher post-fight (before: 43.0+/-6.9 mg/dL, after: 45.1+/-8.0 mg/dL) and stayed at high levels during the recovery period (43.6+/-8.1 mg/dL) compared to the rest values (40.0+/-6.6 mg/dL). The fight did not cause changes in the concentrations of the cell damage markers of creatine kinase, aspartate aminotransferase and creatinine. However, blood concentrations of the alanine aminotransferase (before: 16.1+/-7.1 U/L, after: 18.6+/-7.1 U/L) and lactate dehydrogenase (before: 491.5+/-177.6 U/L, after: 542.6+/-141.4 U/L) enzymes were elevated after the fight. Heart rate (before: 122+/-25 bpm, after: 165+/-17 bpm) and lactate (before: 2.5+/-1.2 mmol/L, after: 11.9+/-5.8 mmol/L) increased significantly with the completion of combat. Despite this, the athletes rated the fight as being light or somewhat hard (12+/-2). These results showed that muscle glycogen is not the only substrate used in Brazilian jiu-jitsu fights, since there are indications of activation of the glycolytic, lipolytic and proteolytic pathways. Furthermore, the athletes rated the combats as being light or somewhat hard although muscle damage markers were generated.
Resumo:
The purpose of this study was to investigate energy system contributions and energy costs in combat situations. The sample consisted of 10 male taekwondo athletes (age: 21 +/- 6 years old; height: 176.2 +/- 5.3 cm; body mass: 67.2 +/- 8.9 kg) who compete at the national or international level. To estimate the energy contributions, and total energy cost of the fights, athletes performed a simulated competition consisting of three 2 min rounds with a 1 min recovery between each round. The combats were filmed to quantify the actual time spent fighting in each round. The contribution of the aerobic (WAER), anaerobic alactic (W-PCR), and anaerobic lactic (Wleft perpendicularLA-right perpendicular) energy systems was estimated through the measurement of oxygen consumption during the activity, the fast component of excess post-exercise oxygen consumption, and the change in blood lactate concentration in each round, respectively. The mean ratio of high intensity actions to moments of low intensity (steps and pauses) was similar to 1:7. The W-AER, W-PCR and (Wleft perpendicularLA-right perpendicular) system contributions were estimated as 120 +/- 22 kJ (66 +/- 6%), 54 +/- 21 kJ (30 +/- 6%), 8.5 kJ (4 +/- 2%), respectively. Thus, training sessions should be directed mainly to the improvement of the anaerobic alactic system (responsible by the highintensity actions), and of the aerobic system (responsible by the recovery process between high- intensity actions).
Resumo:
The purpose of this study was to determine the physiological, anthropometric, performance, and nutritional characteristics of the Brazil Canoe Polo National Team. Ten male canoe polo athletes (age 26.7 +/- 4.1 years) performed a battery of tests including assessments of anthropometric parameters, upper-body anaerobic power (Wingate), muscular strength, aerobic power, and nutritional profile. In addition, we characterized heart rate and plasma lactate responses and the temporal pattern of the effort/recovery during a simulated canoe polo match. The main results are as follows: body fat, 12.3 +/- 4.0%; upper-body peak and mean power, 6.8 +/- 0.5 and 4.7 +/- 0.4 W . kg(-1), respectively; 1-RM bench press, 99.1 +/- 11.7 kg; peak oxygen uptake, 44.3 +/- 5.8 mL . kg(-1) . min(-1); total energy intake, 42.8 +/- 8.6 kcal . kg(-1); protein, carbohydrate, and fat intakes, 1.9 +/- 0.1, 5.0 +/- 1.5, and 1.7 +/- 0.4 g . kg(-1), respectively; mean heart rate, 146 +/- 11 beats . min(-1); plasma lactate, 5.7 +/- 3.8 mmol . L-1 at half-time and 4.6 +/- 2.2 mmol . L-1 at the end of the match; effort time (relative to total match time), 93.1 +/- 3.0%; number of sprints, 9.6 +/- 4.4. The results of this study will assist coaches, trainers, and nutritionists in developing more adequate training programmes and dietary interventions for canoe polo athletes.
Resumo:
Purpose: To compare two modalities of exercise training (i.e., Endurance Training [ET] and High-Intensity Interval Training [HIT]) on health-related parameters in obese children aged between 8 and 12 years. Methods: Thirty obese children were randomly allocated into either the ET or HIT group. The ET group performed a 30 to 60-minute continuous exercise at 80% of the peak heart rate (HR). The HIT group training performed 3 to 6 sets of 60-s sprint at 100% of the peak velocity interspersed by a 3-min active recovery period at 50% of the exercise velocity. HIT sessions last similar to 70% less than ET sessions. At baseline and after 12 weeks of intervention, aerobic fitness, body composition and metabolic parameters were assessed. Results: Both the absolute (ET: 26.0%; HIT: 19.0%) and the relative VO2 peak (ET: 13.1%; HIT: 14.6%) were significantly increased in both groups after the intervention. Additionally, the total time of exercise (ET: 19.5%; HIT: 16.4%) and the peak velocity during the maximal graded cardiorespiratory test (ET: 16.9%; HIT: 13.4%) were significantly improved across interventions. Insulinemia (ET: 29.4%; HIT: 30.5%) and HOMA-index (ET: 42.8%; HIT: 37.0%) were significantly lower for both groups at POST when compared to PRE. Body mass was significantly reduced in the HIT (2.6%), but not in the ET group (1.2%). A significant reduction in BMI was observed for both groups after the intervention (ET: 3.0%; HIT: 5.0%). The responsiveness analysis revealed a very similar pattern of the most responsive variables among groups. Conclusion: HIT and ET were equally effective in improving important health related parameters in obese youth.
Resumo:
The aim of the present study was to compare performance and physiological responses during arm and leg aerobic power tests of combat duration in male child, cadet and senior judo athletes. Power output and physiological parameters, i.e., peak oxygen uptake ((V)over dotO(2)peak), peak ventilation, peak heart rate, lactate, and rate of perceived exertion, of 7 child (under 15 years: age class U15, 12.7 +/- 1.1 yrs), 10 cadet (U17, 14.9 +/- 0.7 yrs) and 8 senior (+20, 29.3 +/- 9.2 yrs) male judo athletes were assessed during incremental tests of combat duration on an arm crank and a cycle ergometer. Children as well as cadets demonstrated higher upper body relative VO(2)peak than seniors (37.3 +/- 4.9, 39.2 +/- 5.0 and 31.0 +/- 2.1 ml.kg(-1).min(-1), respectively); moreover, upper and lower body relative VO(2)peak decreased with increasing age (r = -0.575, p < 0.003 and r = -0.580, p < 0.002, respectively). Children showed lower blood lactate concentrations after cranking as well as after cycling when compared to seniors (7.8 +/- 2.4 vs. 11.4 +/- 2.1 mmol.l(-1) and 7.9 +/- 3.0 vs. 12.0 +/- 1.9 mmol.l(-1), respectively); furthermore, blood lactate values after cranking increased with age (r = 0.473, p < 0.017). These differences should be considered in planning the training for judo athletes of different age classes.
Resumo:
The aim of this study was to investigate the methods adopted to reduce body mass (BM) in competitive athletes from the grappling (judo, jujitsu) and striking (karate and tae kwon do) combat sports in the state of Minas Gerais, Brazil. An exploratory methodology was employed through descriptive research, using a standardized questionnaire with objective questions self-administered to 580 athletes (25.0 +/- 3.7 yr, 74.5 +/- 9.7 kg, and 16.4% +/- 5.1% body fat). Regardless of the sport, 60% of the athletes reported using a method of rapid weight loss (RWL) through increased energy expenditure. Strikers tend to begin reducing BM during adolescence. Furthermore, 50% of the sample used saunas and plastic clothing, and only 26.1% received advice from a nutritionist. The authors conclude that a high percentage of athletes uses RWL methods. In addition, a high percentage of athletes uses unapproved or prohibited methods such as diuretics, saunas, and plastic clothing. The age at which combat sport athletes reduce BM for the first time is also worrying, especially among strikers.
Resumo:
Introduction: The ankle sprain is one of the most common injuries in athletes. Direct evaluation of the ligament laxity can be obtained through the objective measurement of extreme passive inversion and eversion movements, but there are few studies on the use of the evaluation of the passive resistive torque of the ankle to assess the capsule and ligaments resistance. Objective: The aim of this study was to compare the inversion and eversion passive torque in athletes with and without ankle sprains history. Method: 32 female basketball and volleyball athletes (16.06 +/- 0.8 years old; 67.63 +/- 8.17 kg; 177.8 +/- 6.47 cm) participated in this study. Their ankles were divided into two groups: control group (29), composed of symptom-free ankles, and ankle sprain group, composed of ankles which have suffered injury (29). The resistive torque at maximum passive ankle movement was measured by the isokinetic dynamometer and the muscular activity by electromyography system. The athletes performed 2 repetitions of inversion and eversion movement at 5, 10 and 20 degrees/s and the same protocol only at maximum inversion movement. Results: The resistive passive torque during the inversion and eversion was lower in the ankle sprain group. This group also showed lower torques at the maximum inversion movement. No differences were observed between inversion and eversion movement. Conclusions: Ankle sprain leads to lower passive torque, indicating reduction of the resistance of the lateral ankle ligaments and mechanical laxity.
Resumo:
Athletes from many sports that are categorized by body mass tend to reduce it to fit in lower categories. Such reduction can compromise the athlete's performance and health. In order to determine the most appropriate category, the body composition is highly relevant, especially to avoid excessive reduction. Thus, this study analyzed the morphological profile of Brazilian Jiu-Jitsu elite athletes. The sample was composed of 11 athletes, aged 25.8 +/- 3.3 years, medalists in national and/or international competitions. The analysis was performed to determine the anthropometric body composition and somatotype. Body fat percentage from this population was 10.3 +/- 2.6 % fat, a high percentage of muscle mass (61.3 +/- 1.5 %), and predominant mesomorphic component (5.5 +/- 1.0) was observed. The points of highest and lowest fat accumulation were respectively abdominal (15.7 +/- 6.3 mm) and chest (6.8 +/- 1.5 mm) regions. It can be concluded that athletes from this sport showed higher body mass during the preparatory period than in competitive conditions (4.4 +/- 2.4 %); however, they showed low body fat, high muscle mass percentage and predominant mesomorphic component.
Resumo:
Calegari VC, Abrantes JL, Silveira LR, Paula FM, Costa JM Jr, Rafacho A, Velloso LA, Carneiro EM, Bosqueiro JR, Boschero AC, Zoppi CC. Endurance training stimulates growth and survival pathways and the redox balance in rat pancreatic islets. J Appl Physiol 112: 711-718, 2012. First published December 15, 2011; doi:10.1152/japplphysiol.00318.2011.-Endurance training has been shown to increase pancreatic beta-cell function and mass. However, whether exercise modulates beta-cell growth and survival pathways signaling is not completely understood. This study investigated the effects of exercise on growth and apoptotic markers levels in rat pancreatic islets. Male Wistar rats were randomly assigned to 8-wk endurance training or to a sedentary control group. After that, pancreatic islets were isolated; gene expression and the total content and phosphorylation of several proteins related to growth and apoptotic pathways as well as the main antioxidant enzymes were determined by real-time polymerase chain reaction and Western blot analysis, respectively. Reactive oxygen species (ROS) production was measured by fluorescence. Endurance training increased the time to reach fatigue by 50%. Endurance training resulted in increased protein phosphorylation content of AKT (75%), AKT substrate (AS160; 100%), mTOR (60%), p70s6k (90%), and ERK1/2 (50%), compared with islets from control group. Catalase protein content was 50% higher, whereas ROS production was 49 and 77% lower in islets from trained rats under basal and stimulating glucose conditions, respectively. Bcl-2 mRNA and protein levels increased by 46 and 100%, respectively. Bax and cleaved caspase-3 protein contents were reduced by 25 and 50% in islets from trained rats, respectively. In conclusion, these results demonstrate that endurance training favors the beta-cell growth and survival by activating AKT and ERK1/2 pathways, enhancing antioxidant capacity, and reducing ROS production and apoptotic proteins content.
Resumo:
Background: The objective of this study was to analyze the muscle strength and endurance of the proximal and distal lower-extremity muscles in peripheral artery disease (PAD) patients. Methods: Twenty patients with bilateral PAD with symptoms of intermittent claudication and nine control subjects without PAD were included in the study, comprising 40 and 18 legs, respectively. All subjects performed an isokinetic muscle test to evaluate the muscle strength and endurance of the proximal (knee extension and knee flexion movements) and distal (plantar flexion and dorsiflexion movements) muscle groups in the lower extremity. Results: Compared with the control group, the PAD group presented lower muscle strength in knee flexion (-14.0%), dorsiflexion (-26.0%), and plantar flexion (-21.2%) movements (P < 0.05) but similar strength in knee extension movements (P > 0.05). The PAD patients presented a 13.5% lower knee flexion/extension strength ratio compared with the control subjects (P < 0.05), as well as lower muscle endurance in dorsiflexion (-28.1%) and plantar flexion (-17.0%) movements (P < 0.05). The muscle endurance in knee flexion and knee extension movements was similar between PAD patients and the control subjects (P > 0.05). Conclusion: PAD patients present lower proximal and distal muscle strength and lower distal muscle endurance than control patients. Therefore, interventions to improve muscle strength and endurance should be prescribed for PAD patients.