20 resultados para Emissions to propagate
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.
Resumo:
Semi-supervised learning techniques have gained increasing attention in the machine learning community, as a result of two main factors: (1) the available data is exponentially increasing; (2) the task of data labeling is cumbersome and expensive, involving human experts in the process. In this paper, we propose a network-based semi-supervised learning method inspired by the modularity greedy algorithm, which was originally applied for unsupervised learning. Changes have been made in the process of modularity maximization in a way to adapt the model to propagate labels throughout the network. Furthermore, a network reduction technique is introduced, as well as an extensive analysis of its impact on the network. Computer simulations are performed for artificial and real-world databases, providing a numerical quantitative basis for the performance of the proposed method.
Resumo:
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Resumo:
In 2008, academic researchers and public service officials created a university extension studies platform based on online and on-site meetings denominated "Work-Related Accidents Forum: Analysis, Prevention, and Other Relevant Aspects. Its aim was to help public agents and social partners to propagate a systemic approach that would be helpful in the surveillance and prevention of work-related accidents. This article describes and analyses such a platform. Online access is free and structured to: support dissemination of updated concepts; support on-site meetings and capacity to build educational activities; and keep a permanent space for debate among the registered participants. The desired result is the propagation of a social-technical-systemic view of work-related accidents that replaces the current traditional view that emphasizes human error and results in blaming the victims. The Forum uses an educational approach known as permanent health education, which is based on the experience and needs of workers and encourages debate among participants. The forum adopts a problematizing pedagogy that starts from the requirements and experiences of the social actors and stimulates support and discussions among them in line with an ongoing health educational approach. The current challenge is to turn the platform into a social networking website in order to broaden its links with society.
Resumo:
Sulfur (S) deficiency in soils is becoming increasingly common in many areas of the world as a result of agronomic practices, high biomass exportation and reduced S emissions to the atmosphere. In this review, the incidence and commercial exploitation of S pools in nature are discussed, as well as the importance of S for plants and the organic and inorganic S forms in soil and their transformations, especially the process of microbiological oxidation of elemental sulfur (S0) as an alternative to the replenishment of S levels in the soil. The diversity of S0-oxidizing microorganisms in soils, in particular the genus Thiobacillus, and the biochemical mechanisms of S0 oxidation in bacteria were also addressed. Finally, the main methods to measure the S0 oxidation rate in soils and the variables that influence this process were revised.
Resumo:
The study of Antarctic archaeal communities adds information on the biogeography of this group and helps understanding the dynamics of biogenic methane production in such extreme habitats. Molecular methods were combined to methane flux determinations in Martel Inlet, Admiralty Bay, to assess archaeal diversity, to obtain information about contribution of the area to atmospheric methane budget and to detect possible interferences of the Antarctic Brazilian Station Comandante Ferraz (EACF) wastewater discharge on local archaeal communities and methane emissions. Methane fluxes in Martel Inlet ranged from 3.2 to 117.9 mu mol CH(4) m(-2) d(-1), with an average of 51.3 +/- 8.5 mu mol CH(4) m(-2) d(-1) and a median of 57.6 mu mol CH(4) m(-2)d(-1). However, three negative fluxes averaging -11.3 mu mol CH(4) m(-2) d(-1) were detected in MacKellar Inlet, indicating that Admiralty Bay can be either a source or sink of atmospheric methane. Denaturing gradient gel electrophoresis (DGGE) showed that archaeal communities at EACF varied with depth and formed a group separated from the reference sites. Granulometric analysis indicated that differences observed may be mostly related to sediment type. However, an influence of wastewater input could not be discarded, since higher methane fluxes were found at CF site. suggesting stimulation of local methanogenesis. DGGE profile of the wastewater sample grouped separated from all other samples, suggesting that methanogenesis stimulation may be due to changes in environmental conditions rather than to the input of allochtonous species from the wastewater. 16S ribosomal DNA clone libraries analysis showed that all wastewater sequences were related to known methanogenic groups belonging to the hydrogenotrophic genera Methanobacterium and Methanobrevibacter and the aceticlastic genus Methanosaeta. EACF and Botany Point sediment clone libraries retrieved only groups of uncultivated Archaea, with predominance of Crenarchaeota representatives (MCG, MG1, MBG-B, MBG-C and MHVG groups). Euryarchaeota sequences found were mostly related to the LDS and RC-V groups, but MBG-D and DHVE-5 were also present. No representatives of cultivated methanogenic groups were found, but coverage estimates suggest that a higher number of clones would have to be analyzed in order to cover the greater archaeal diversity of Martel Inlet sediment. Nevertheless, the analysis of the libraries revealed groups not commonly found by other authors in Antarctic habitats and also indicated the presence of groups of uncultivated archaea previously associated to methane rich environments or to the methane cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Batch combustion of fixed beds of coal, bagasse and blends thereof took place in a pre-heated two-stage electric laboratory furnace, under high-heating rates. The average input fuel/air equivalence ratios were similar for all fuels. The primary and secondary furnace temperatures were varied from 800 degrees C to 1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on the emissions from the two fuels were assessed. Furnace effluents were analyzed for carbon dioxide and for products of incomplete combustion (PIC) including CO, volatile and semi-volatile hydrocarbons, as well as particulate matter. Results showed that whereas CO2 was generated during both the observed sequential volatile matter and char combustion phases of the fuels, PICs were only generated during the volatile matter combustion phase. CO2 emissions were the highest from coal, whereas CO and other PIC emissions were the highest from bagasse. Under this particular combustion configuration, combustion of the volatile matter of the blends resulted in lower yields of PIC, than combustion of the volatiles of the neat fuels. Though CO and unburned hydrocarbons from coal as well as from the blends did not exhibit a clear trend with furnace temperature, such emissions from bagasse clearly increased with temperature. The presence of the secondary furnace (afterburner) typically reduced PIC, by promoting further oxidation of the primary furnace effluents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Exposure to fine fractions of particulate matter (PM2.5) is associated with increased hospital admissions and mortality for respiratory and cardiovascular disease in children and the elderly. This study aims to estimate the toxicological risk of PM2.5 from biomass burning in children and adolescents between the age of 6 and 14 in Tangara da Serra, a municipality of Subequatorial Brazilian Amazon. Methods: Risk assessment methodology was applied to estimate the risk quotient in two scenarios of exposure according to local seasonality. The potential dose of PM2.5 was estimated using the Monte Carlo simulation, stratifying the population by age, gender, asthma and Body Mass Index (BMI). Results: Male asthmatic children under the age of 8 at normal body rate had the highest risk quotient among the subgroups. The general potential average dose of PM2.5 was 1.95 mu g/kg.day (95% CI: 1.62 - 2.27) during the dry scenario and 0.32 mu g/kg. day (95% CI: 0.29 - 0.34) in the rainy scenario. During the dry season, children and adolescents showed a toxicological risk to PM2.5 of 2.07 mu g/kg. day (95% CI: 1.85 - 2.30). Conclusions: Children and adolescents living in the Subequatorial Brazilian Amazon region were exposed to high levels of PM2.5 resulting in toxicological risk for this multi-pollutant. The toxicological risk quotients of children in this region were comparable or higher to children living in metropolitan regions with PM2.5 air pollution above the recommended limits to human health.
Resumo:
In response to herbivore attack, plants release herbivore-induced plant volatiles (HIPVs) that represent important chemical cues for herbivore natural enemies. Additionally, HIPVs have been shown to mediate other ecological interactions with herbivores. Differently from natural enemies that are generally attracted to HIPVs, herbivores can be either attracted or repelled depending on several biological and ecological parameters. Our study aimed to assess the olfactory response of fall armyworm-mated female moths toward odors released by mechanically and herbivore-induced corn at different time intervals. Results showed that female moths strongly respond to corn volatiles, although fresh damaged corn odors (0-1 h) are not recognized by moths. Moreover, females preferred volatiles released by undamaged plant over herbivore-induced plants at 5-6 h. This preference for undamaged plants may reflect an adaptive strategy of moths to avoid competitors and natural enemies for their offspring. We discussed our results based on knowledge about corn volatile release pattern and raise possible explanations for fall armyworm moth behavior.
Resumo:
The influence of silver nanoparticles (NPs) on the frequency upconversion luminescence in Er3+ doped TeO2-WO3-Bi2O3 glasses is reported. The effect of the NPs on the Er3+ luminescence was controlled by appropriate heat-treatment of the samples. Enhancement up to 700% was obtained for the upconverted emissions at 527, 550, and 660 nm, when a laser at 980 nm is used for excitation. Since the laser frequency is far from the NPs surface plasmon resonance frequency, the luminescence enhancement is attributed to the local field increase in the proximity of the NPs and not to energy transfer from the NPs to the emitters as is usually reported. This is the first time that the effect is investigated for tellurite-tungstate-bismutate glasses and the enhancement observed is the largest reported for a tellurium oxide based glass. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754468]
Resumo:
Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (Sao Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 mu m), and its concentration in total aerosol ranged from 25 to 1186 ng m(-3). The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 +/- 2.97 mu g m(-3) (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 pm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study verifies the effects of contralateral noise on otoacoustic emissions and auditory evoked potentials. Short, middle and late auditory evoked potentials as well as otoacoustic emissions with and without white noise were assessed. Twenty-five subjects, normal-hearing, both genders, aged 18 to 30 years, were tested. In general, latencies of the various auditory potentials were increased at noise conditions, whereas amplitudes were diminished at noise conditions for short, middle and late latency responses combined in the same subject. The amplitude of otoacoustic emission decreased significantly in the condition with contralateral noise in comparison to the condition without noise. Our results indicate that most subjects presented different responses between conditions (with and without noise) in all tests, thereby suggesting that the efferent system was acting at both caudal and rostral portions of the auditory system.
Resumo:
A sample of 21 light duty vehicles powered by Otto cycle engines were tested on a chassis dynamometer to measure the exhaust emissions of nitrous oxide (N2O). The tests were performed at the Vehicle Emission Laboratory of CETESB (Environmental Company of the State of Sao Paulo) using the US-FTP-75 (Federal Test Procedure) driving cycle. The sample tested included passenger cars running on three types of fuels used in Brazil: gasohol, ethanol and CNG. The measurement of N2O was made using two methods: Non Dispersive InfraRed (NDIR) analyzer and Fourier Transform InfraRed spectroscopy (FTIR). Measurements of regulated pollutants were also made in order to establish correlations between N2O and NOx. The average N2O emission factors obtained by the NDIR method was 78 +/- 41 mg.km(-1) for vehicles running with gasohol, 73 +/- 45 mg.km(-1) for ethanol vehicles and 171 +/- 69 mg.km(-1) for CNG vehicles. Seventeen results using the FTIR method were also obtained. For gasohol vehicles the results showed a good agreement between the two methods, with an average emission factor of 68 +/- 41 mg.km(-1). The FTIR measurement results of N2O for ethanol and CNG vehicles were much lower than those obtained by the NDIR method. The emission factors were 17 +/- 10 mg.km(-1) and 33 +/- 17 mg.km(-1), respectively, possibly because of the interference of water vapor (present at a higher concentration in the exhaust gases of these vehicles) on measurements by the NDIR method.
Resumo:
Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress-induced accumulation of reactive oxygen species (ROS), but the products of isoprene-ROS reactions in plants have not been detected. Using pyruvate-2-13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biotachemistryclimate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.
Resumo:
Tropical regions, especially the Amazon region, account for large emissions of methane (CH4). Here, we present CH4 observations from two airborne campaigns conducted within the BARCA (Balanco Atmosferico Regional de Carbono na Amazonia) project in the Amazon basin in November 2008 (end of the dry season) and May 2009 (end of the wet season). We performed continuous measurements of CH4 onboard an aircraft for the first time in the Amazon region, covering the whole Amazon basin with over 150 vertical profiles between altitudes of 500 m and 4000 m. The observations support the finding of previous ground-based, airborne, and satellite measurements that the Amazon basin is a large source of atmospheric CH4. Isotope analysis verified that the majority of emissions can be attributed to CH4 emissions from wetlands, while urban CH4 emissions could be also traced back to biogenic origin. A comparison of five TM5 based global CH4 inversions with the observations clearly indicates that the inversions using SCIAMACHY observations represent the BARCA observations best. The calculated CH4 flux estimate obtained from the mismatch between observations and TM5-modeled CH4 fields ranges from 36 to 43 mg m(-2) d(-1) for the Amazon lowland region.