7 resultados para Emerging Human Coronaviruses

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the clinical impact of human coronaviruses (HCoV) OC43, 229E, HKU1 and NL63 in pediatric patients with cystic fibrosis (CF) during routine and exacerbation visits. A total of 408 nasopharyngeal aspirate samples were obtained from 103 patients over a 1-year period. Samples positive for HCoV were submitted for nucleotide sequencing to determine the species. Nineteen samples (4.65%) were positive for HCoV, of which 8 were positive for NL63, 6 for OC43, 4 for HKU1, and 1 for 229E. Identification of HCoV was not associated with an increased rate of respiratory exacerbations, but NL63-positive patients had higher exacerbation rates than patients who were positive for other HCoV species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multinationals from emerging countries such as Brazil now take the path of internationalisation where early movers have already been. However, these companies have to develop new tools to deal with their own challenges, since they come from countries with different historical backgrounds and specificities. This paper explores challenges for Brazilian MNCs in terms of HRM when operating abroad. It presents the results of six cases of Brazilian MNCs through a grounded theory study. Results show these companies had to deal with their former economic turbulence, shortage of qualified workforce to work internationally and the need to develop HRM competencies to operate globally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Leptospirosis is a re-emerging zoonosis with protean clinical manifestations. Recently, the importance of pulmonary hemorrhage as a lethal complication of this disease has been recognized. In the present study, five human necropsies of leptospirosis (Weil‘s syndrome) with extensive pulmonary manifestations were analysed, and the antibodies expressed in blood vessels and cells involved in ion and water transport were used, seeking to better understand the pathophysiology of the lung injury associated with this disease. Principal Findings: Prominent vascular damage was present in the lung microcirculation, with decreased CD34 and preserved aquaporin 1 expression. At the periphery and even inside the extensive areas of edema and intraalveolar hemorrhage, enlarged, apparently hypertrophic type I pneumocytes (PI) were detected and interpreted as a non-specific attempt of clearence of the intraalveolar fluid, in which ionic transport, particularly of sodium, plays a predominant role, as suggested by the apparently increased ENaC and aquaporin 5 expression. Connexin 43 was present in most pneumocytes, and in the cytoplasm of the more preserved endothelial cells. The number of type II pneumocytes (PII) was slightly decreased when compared to normal lungs and those of patients with septicemia from other causes, a fact that may contribute to the progressively low PI count, resulting in deficient restoration after damage to the alveolar epithelial integrity and, consequently, a poor outcome of the pulmonary edema and hemorrhage. Conclusions: Pathogenesis of lung injury in human leptospirosis was discussed, and the possibility of primary noninflammatory vascular damage was considered, so far of undefinite etiopathogenesis, as the initial pathological manifestation of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The finished version of the human genome sequence was completed in 2003, and this event initiated a revolution in medical practice, which is usually referred to as the age of genomic or personalized medicine. Genomic medicine aims to be predictive, personalized, preventive, and also participative (4Ps). It offers a new approach to several pathological conditions, although its impact so far has been more evident in mendelian diseases. This article briefly reviews the potential advantages of this approach, and also some issues that may arise in the attempt to apply the accumulated knowledge from genomic medicine to clinical practice in emerging countries. The advantages of applying genomic medicine into clinical practice are obvious, enabling prediction, prevention, and early diagnosis and treatment of several genetic disorders. However, there are also some issues, such as those related to: (a) the need for approval of a law equivalent to the Genetic Information Nondiscrimination Act, which was approved in 2008 in the USA; (b) the need for private and public funding for genetics and genomics; (c) the need for development of innovative healthcare systems that may substantially cut costs (e.g. costs of periodic medical followup); (d) the need for new graduate and postgraduate curricula in which genomic medicine is emphasized; and (e) the need to adequately inform the population and possible consumers of genetic testing, with reference to the basic aspects of genomic medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC Methods Microarray experiments were performed with custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary RCC tumors and 11 nontumor adjacent matched tissues were analyzed. Meta-analyses were performed with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. Results A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). A signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value ≤0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 22% were significantly (p <0.05) cis correlated with the expression of the mRNA in the same locus across RCC and three other human tissues. Gene Ontology (GO) analysis of those loci pointed to 'regulation of biological processes’ as the main enriched category. A module map analysis of the protein-coding genes significantly (p <0.05) trans correlated with the 20% most abundant lncRNAs, identified 51 enriched GO terms (p <0.05). We determined that 60% of the expressed lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands, RNA Pol II binding and histones methylation and acetylation. Conclusion Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them are significantly altered in RCC in comparison with nontumor samples. The majority of these lncRNAs is evolutionarily conserved and possibly modulated by epigenetic modifications. Our data suggest that these RCC lncRNAs may contribute to the complex network of regulatory RNAs playing a role in renal cell malignant transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease’s etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.