5 resultados para Electrostatic charge separation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este estudo teve como objetivo avaliar alguns impactos decorrentes do deslocamento miscível de efluente de nitração de uma indústria de explosivos aplicado em colunas de um Latossolo Amarelo, horizonte B (LA-B), submetido aos tratamentos: adição de carbonatos (BASE), ácidos (ACID), fosfato (FOSF), carbonatos e fosfato (BASE-FOSF) e ácidos e fosfatos (ACID-FOSF). A recuperação de nitrogênio em relação ao total aplicado varia entre 10,1 (ACID) e 65,5% (BASE). Há correlação significativa entre as curvas de transposição de N obtidas experimentalmente e as simuladas pelo aplicativo STANMOD para a maioria das colunas (p<0,001). A exceção ocorreu para ACID-FOSF (p=0,202). Não há correlação entre carga eletrostática líquida (CEL) e as variáveis de ajuste do modelo: fator de retardamento (FR), coeficiente de dispersão-difusão (D) e taxa de decaimento de primeira ordem m (µ). A adição de fosfato (FOSF) favorece a movimentação do nitrogênio, pois diminui FR (2,35±0,05) e µ (0,498±0,050 h-1) e aumenta D (41,8±5,5 cm2 h-1) em relação ao observado na coluna LA-B (2,51±0,03; 1,697±0,084 h-1e 2,8±1,3 cm2 h-1 respectivamente). A adição de carbonatos e/ou fosfatos (BASE, BASE/FOSF e FOSF) resultou nos maiores valores máximos de demanda química de oxigênio (DQOMÁX). A pequena quantidade de DNA extraída das células bacterianas nos solos sugere que, possivelmente, os processos que governam a adsorção e movimentação de N sejam de natureza não biológica ou que a elevada DQO do líquido percolado prejudica os microrganismos do solo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning has become a widely implemented technique for the generation of nonwoven mats that are useful in tissue engineering and filter applications. The overriding factor that has contributed to the popularity of this method is the ease with which fibers with submicron diameters can be produced. Fibers on that size scale are comparable to protein filaments that are observed in the extracellular matrix. The apparatus and procedures for conducting electrospinning experiments are ostensibly simple. While it is rarely reported in the literature on this topic, any experience with this method of fiber spinning reveals substantial ambiguities in how the process can be controlled to generate reproducible results. The simplicity of the procedure belies the complexity of the physical processes that determine the electrospinning process dynamics. In this article, three process domains and the physical domain of charge interaction are identified as important in electrospinning: (a) creation of charge carriers, (b) charge transport, (c) residual charge. The initial event that enables electrospinning is the generation of region of excess charge in the fluid that is to be electrospun. The electrostatic forces that develop on this region of charged fluid in the presence of a high potential result in the ejection of a fluid jet that solidifies into the resulting fiber. The transport of charge from the charge solution to the grounded collection device produces some of the current which is observed. That transport can occur by the fluid jet and through the atmosphere surrounding the electrospinning apparatus. Charges that are created in the fluid that are not dissipated remain in the solidified fiber as residual charges. The physics of each of these domains in the electrospinning process is summarized in terms of the current understanding, and possible sources of ambiguity in the implementation of this technique are indicated. Directions for future research to further articulate the behavior of the electrospinning process are suggested. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3682464]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some atomic multipoles (charges, dipoles and quadrupoles) from the Quantum Theory of Atoms in Molecules (QTAIM) and CHELPG charges are used to investigate interactions between a proton and a molecule (F2, Cl2, BF, AlF, BeO, MgO, LiH, H2CO, NH3, PH3, BF3, and CO2). Calculations were done at the B3LYP/6-311G(3d,3p) level. The main aspect of this work is the investigation of polarization effects over electrostatic potentials and atomic multipoles along a medium to long range of interaction distances. Large electronic charge fluxes and polarization changes are induced by a proton mainly when this positive particle approaches the least electronegative atom of diatomic heteronuclear molecules. The search for simple equations to describe polarization on electrostatic potentials from QTAIM quantities resulted in linear relations with r-4 (r is the interaction distance) for many cases. Moreover, the contribution from atomic dipoles to these potentials is usually the most affected contribution by polarization what reinforces the need for these dipoles to a minimal description of purely electrostatic interactions. Finally, CHELPG charges provide a description of polarization effects on electrostatic potentials that is in disagreement with physical arguments for certain of these molecules. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates in the limit U -> infinity and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole continuum in the limit U -> 0. Power-law singularities along boundary lines of the spectrum are described by effective impurity models that are explicitly invariant under spin and eta-spin SU(2) rotations. The Mott-Hubbard metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0. The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove singularity that persists as a consequence of integrability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.