16 resultados para Electrostatic Interactions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Some atomic multipoles (charges, dipoles and quadrupoles) from the Quantum Theory of Atoms in Molecules (QTAIM) and CHELPG charges are used to investigate interactions between a proton and a molecule (F2, Cl2, BF, AlF, BeO, MgO, LiH, H2CO, NH3, PH3, BF3, and CO2). Calculations were done at the B3LYP/6-311G(3d,3p) level. The main aspect of this work is the investigation of polarization effects over electrostatic potentials and atomic multipoles along a medium to long range of interaction distances. Large electronic charge fluxes and polarization changes are induced by a proton mainly when this positive particle approaches the least electronegative atom of diatomic heteronuclear molecules. The search for simple equations to describe polarization on electrostatic potentials from QTAIM quantities resulted in linear relations with r-4 (r is the interaction distance) for many cases. Moreover, the contribution from atomic dipoles to these potentials is usually the most affected contribution by polarization what reinforces the need for these dipoles to a minimal description of purely electrostatic interactions. Finally, CHELPG charges provide a description of polarization effects on electrostatic potentials that is in disagreement with physical arguments for certain of these molecules. (c) 2012 Wiley Periodicals, Inc.
Resumo:
We examined the interaction of the cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) with Langmuir monolayers of zwitterionic (dipalmitoyl phosphatidylcholine, DPPC, and dipalmitoyl phosphatidylethanolamine, DPPE) and negatively charged phospholipids (dipalmitoyl phosphatidic acid, DPPA, and dipalmitoyl phosphatidylglycerol, DPPG). Both surface pressure and surface potential isotherms became more expanded upon addition of TRP3 (DPPE similar to DPPC << DPPA < DPPG). The stronger interaction with negatively charged phospholipids agrees with data for vesicles and planar lipid bilayers, and with AMPs greater activity against bacterial membranes versus mammalian cell membranes. Considerable expansion of negatively charged monolayers occurred at 10 and 30 mol% TRP3, especially at low surface pressure. Moreover, a difference was observed between PA and PG, demonstrating that the interaction, besides being modulated by electrostatic interactions, displays specificity with regard to headgroup, being more pronounced in the case of PG, present in large quantities in bacterial membranes. In previous studies, it was proposed that the peptide acts by a toroidal pore-like mechanism [1,2]. Considering the evidence from the literature that PG shows a propensity to form a positive curvature as do toroidal pores, the observation of TRP3's preference for the PG headgroup and the dramatic increase in area promoted by this interaction represent further support for the toroidal pore mechanism of action proposed for TRP3. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Optical memories with long-term stability at high temperatures have long been pursued in azopolymers with photoinduced birefringence. In this study, we show that the residual birefringence in layer-by-layer (LbL) films made with poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) alternated with poly(allylamine hydrochloride) (PAH) can be tuned by varying the extent of electrostatic interactions with film fabrication at different pHs for PAH. The dynamics of both writing and relaxation processes could be explained with a two-stage mechanism involving the orientation of the chromophores per se and the chain movement. Upon calculating the activation energies for these processes, we demonstrate semiquantitatively that reduced electrostatic interactions in films prepared at higher pH, for which PAH is less charged, are responsible for the longer stability at high temperatures. This is attributed to orientation of PAZO chromophores via cooperative aggregation, where the presence of counterions hindered relaxation.
Resumo:
Hb S-Sao Paulo (SP) [HBB:c.20A > T p.Glu6Val: c.196A > G p.Lys65Glu] is a new double-mutant hemoglobin that was found in heterozygosis in an 18-month-old Brazilian male with moderate anemia. It behaves like Hb S in acid electrophoresis, isoelectric focusing and solubility testing but shows different behavior in alkaline electrophoresis, cation-exchange HPLC and RP-HPLC. The variant is slightly unstable, showed reduced oxygen affinity and also appeared to form polymers more stable than the Hb S. Molecular dynamics simulation suggests that the polymerization is favored by interfacial electrostatic interactions. This provides a plausible explanation for some of the reported experimental observations. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Chitosans have been widely exploited in biological applications, including drug delivery and tissue engineering, especially owing to their mucoadhesive properties, but the molecular-level mechanisms for the chitosan action are not known in detail. It is believed that chitosan could affect the mucus by interacting with the proteins mucins, in a process mediated by the cell membrane. In this study we used Langmuir monolayers of dimyristoylphosphatidic acid (DMPA) as simplified membrane models to investigate the interplay between the activity of mucins and chitosan. Surface pressure and surface potential measurements were performed with DMPA monolayers onto which chitosan and/or mucin was adsorbed. We found that the expanding effect from mucin was considerably reduced when chitosan was injected after mucin had been adsorbed on the DMPA monolayer. The results were consistent with the formation of complexes between mucin and chitosan, thus highlighting the importance of electrostatic interactions. Furthermore, chitosan could remove mucin that was co-deposited along with DMPA in Langmuir-Blodgett (LB) films, which could be ascribed to molecular-level interactions between chitosan and mucin inferred from the FTIR spectra of the LB films. In conclusion, the results with Langmuir and LB films suggest that electrostatic interactions are crucial for the mucoadhesive mechanism, which is affected by the complexation between chitosan and mucin. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this work we examine the interaction between the 13-residue cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) and model membranes of variable lipid composition. The effect on peptide conformational properties was investigated by means of CD (circular dichroism) and fluorescence spectroscopies. Based on the hypothesis that the antibiotic acts through a mechanism involving toroidal pore formation, and taking into account that models of toroidal pores imply the formation of positive curvature, we used large unilamellar vesicles (LUV) to mimic the initial step of peptide-lipid interaction, when the peptide binds to the bilayer membrane, and micelles to mimic the topology of the pore itself, since these aggregates display positive curvature. In order to more faithfully assess the role of curvature, micelles were prepared with lysophospholipids containing (qualitatively and quantitatively) head groups identical to those of bilayer phospholipids. CD and fluorescence spectra showed that, while TRP3 binds to bilayers only when they carry negatively charged phospholipids. binding to micelles occurs irrespective of surface charge, indicating that electrostatic interactions play a less predominant role in the latter case. Moreover, the conformations acquired by the peptide were independent of lipid composition in both bilayers and micelles. However, the conformations were different in bilayers and in micelles, suggesting that curvature has an influence on the secondary structure acquired by the peptide. Fluorescence data pointed to an interfacial location of TRP3 in both types of aggregates. Nevertheless, experiments with a water soluble fluorescence quencher suggested that the tryptophan residues are more accessible to the quencher in micelles than in bilayers. Thus, we propose that bilayers and micelles can be used as models for the two steps of toroidal pore formation. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.
Resumo:
The ionization of chlorophyll-c(2) in liquid methanol was investigated by a sequential quantum mechanical/Monte Carlo approach. Focus was placed on the determination of the first ionization energy of chlorophyll-c(2). The results show that the first vertical ionization energy (IE) is red-shifted by 0.47 +/- 0.24 eV relative to the gas-phase value. The red-shift of the chlorophyll-c(2) IE in the liquid phase can be explained by Mg center dot center dot center dot OH hydrogen bonding and long-ranged electrostatic interactions in solution. The ionization threshold for chlorophyll-c2 in liquid methanol is close to 6 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The analysis of the infrared (IR) carbonyl band of some 3-(4'-substituted phenylsulfonyl)-1-methyl-2-piperidones 1-5 bearing as substituents: OMe 1, Me 2, H 3, Cl 4 and NO2 5, supported by B3LY13/6-31G(d,p) calculations along with NBO analysis (for 1, 3 and 5) and X-ray diffraction (for 5), indicated the existence of three stable conformations i.e. quasi-axial (q-ax), syn-clinal (s-cl) and quasi-equatorial (q-eq). In the gas phase, the q-ax conformer is calculated as the most stable (ca. 88%) and the least polar, the s-cl conformer is less stable (ca. 12%) but more polar, and the q-eq conformer is the least stable (ca. 1%) and the most polar of the three conformers evaluated. The sum of the most important orbital interactions from NBO analysis and the trend of the electrostatic interactions accounts for the relative populations as well as for the v(CO) frequencies of the q-ax. s-cl and q-eq conformers calculated in the gas phase. The unique IR v(CO) band in CCl4 may be ascribed to the most stable q-ax conformer. The more intense (60%) high frequency doublet component in CHCl3 may be assigned to the summing up of the least stable q-eq and the less stable s-cl conformers, as their frequencies are almost coincident. The occurrence of only a single v(CO) band in both CH2Cl2 and CH3CN supports the fact that the v(CO) band of the two more polar conformers appear as a single band. Additional support to this rationalization is given by the single point PCM method, which showed a progressive increase of the q-eq + s-cl/q-ax population ratio going from the gas phase to CCl4, to CHCl3, to CH2Cl2 and to CN3CN. X-ray single crystal analysis of 5 indicates that this compound displays a quasi-axial geometry with respect to the [O=C-CH-S] moiety, and that the 2-piperidone ring assumes a slightly distorted half-chair conformation. In the crystal packing, molecules of 5 are arranged into supramolecular layers linked through C-H center dot center dot center dot O interactions along with it pi center dot center dot center dot pi interactions between adjacent benzene rings. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Self-assembly of poly(4-vynil-N-alkyl)pyridinium bromide with alkyl side chains of 2, 5, 7, 10, or 16 carbons from ethanolic solutions onto flat silica surfaces was studied by means of ellipsometry, atomic force microscopy (AFM), contact angle measurements, and sum-frequency generation (SFG) vibrational spectroscopy in the CH3 and CH2 stretch region. Ab initio quantum-chemical calculations on the N-alkylpyridinium side-group with restricted Hartree-Fock (RHF) method and 6-311G (d,p) basis set were C one to estimate the charge distribution along the pyridinium ring and the alkyl side-chain. SFG results showed that longer side chains promote the disorientation of the alkyl groups at the surface, corroborating with the contact angle values. AFM images revealed film homogeneity, regardless the alkyl side group. However, after 24 h contact with water, ringlike structures appeared on the film surfaces, when the polycation alkyl side chain had 7 or less carbons, and as the alkyl chain increased to 10 or 16 carbons, the films dewetted because the hydrophobic interactions prevailed over the electrostatic interactions between the pyridinium charged groups and the negatively charged SiO2 surface. Under acid conditions (HCl 0.1 mol.L-1), the film mean thickness values decreased up to 50% of original values when the alkyl side chains were ethyl or pentyl groups due to ion-pair disruption, but for longer groups they remained unchanged. Quantum-chemical optimization and Mulliken electron population showed that (i) from C2 to C15 the positive charge at the headgroup (HG) decreased 0.025, while the charge at combined HG + alpha-CH2 increased 0.037; and (ii) for C6 or longer, the alkyl side group presents a tilt in the geometry, moving away from the plane. Such effects summed up over the whole polymer chain give support to suggest that when the side chains are longer than 7 carbons, the hydrophobic interaction decreases film stability and increases acid resistance.
Resumo:
Suramin is a polysulphonated naphthylurea with inhibitory activity against the human secreted group IIA phospholipase A(2) (hsPLA2GIIA), and we have investigated suramin binding to recombinant hsPLA2GIIA using site-directed mutagenesis and molecular dynamics (MD) simulations. The changes in suramin binding affinity of 13 cationic residue mutants of the hsPLA2GIIA was strongly correlated with alterations in the inhibition of membrane damaging activity of the protein. Suramin binding to hsPLA2GIIA was also studied by MD simulations, which demonstrated that altered intermolecular potential energy of the suramin/mutant complexes was a reliable indicator of affinity change. Although residues in the C-terminal region play a major role in the stabilization of the hsPLA2GIIA/suramin complex, attractive and repulsive hydrophobic and electrostatic interactions with residues throughout the protein together with the adoption of a bent suramin conformation, all contribute to the stability of the complex. Analysis of the h5PLA2GIIA/suramin interactions allows the prediction of the properties of suramin analogues with improved binding and higher affinities which may be candidates for novel phospholipase A(2) inhibitors. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.
Resumo:
The main aim of this work is to investigate the 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1Im]+[BF4]-) ionic liquid (IL) adsorption on the gamma-Al2O3 (100) by density functional theory calculations to try to rationalize the adsorption as an electrostatic phenomenon. Optimized geometries and interaction energies of IL one-monolayer on the gamma-Al2O3 were obtained on high surface coverage (one cationanion pair per 94.96 nm2). A study of dispersion force was made to estimate its contribution to the adsorption. Overall, the process is ruled by electrostatic interaction between ions and surface. Adsorption of the anion [BF4]- and cation [C4C1Im]+ was also studied by Bader charge analysis and charge density difference for supported and unsupported situations. It is suggested that the IL ions have their charges maintained with significant anion cloud polarization inward to the acid aluminum sites. (c) 2012 Wiley Periodicals, Inc.
Resumo:
We analyze the behavior of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave. We work with a set of pulsed waves that allows us to obtain an exact map for the system. We also use a method of control for near-integrable Hamiltonians that consists of the addition of a small and simple control term to the system. This control term creates invariant tori in phase space that prevent chaos from spreading to large regions, making the controlled dynamics more regular. We show numerically that the control term just slightly modifies the system but is able to drastically reduce chaos with a low additional cost of energy. Moreover, we discuss how the control of chaos and the consequent recovery of regular trajectories in phase space are useful to improve regular particle acceleration.
Resumo:
Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.