12 resultados para Electron correlation calculations
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.
Resumo:
Some cyanopolyynes, HCnN (n = 1, 3, ... , 17), are investigated by means of calculations at the MP2/cc-pVTZ and CCSD/cc-pVDZ levels. Although the MP2/cc-pVTZ results for geometries and molecular dipole moments are encouraging, the CCSD/cc-pVDZ level was superior for the study of infrared fundamental intensities. The main bands are also analyzed with a charge-charge flux-dipole flux (CCFDF) partition model based on quantities given by the Quantum Theory of Atoms in Molecules (QTAIM). The intensity of vibrations corresponding to the stretching of CH bonds (3471-3473 cm(-1)) increases in line with the number of carbon atoms (from 61 to 146 km mol(-1) between HCN and HC13N). This increase is due to the charge flux contribution while the other contributions remain roughly unaltered except for HCN. Moreover, the hydrogen atom loses an almost constant amount of electronic charge during the CH bond enlargement and a small fraction of this charge spreads to atoms farther and farther away from hydrogen as the molecule size increases. The band associated with the doubly degenerate CH bending vibrations (643-732 cm(-1)) presents approximately the same intensity in all the studied cyanopolyynes (from 67 to 76 km mol(-1)). The CCFDF/QTAIM contributions are also nearly the same for these bending modes in HC5N and larger systems. The intensity of the mode mostly identified as CN stretching (around 2378-2399 cm(-1) except for HCN) increases from HCN up to HC7N (from 0.3 to 83 km mol(-1)) and nearly stabilizes around 80-90 km mol(-1) for larger systems. The CCFDF/QTAIM contributions for this mode also change significantly up to HC7N and remain almost constant in larger systems. We also observed the appearing of a very relevant band between 2283 and 2342 cm(-1). This mode is mainly associated with the symmetric stretching of CC triple bonds near the molecule center and exhibits large charge fluxes while the other contributions are almost negligible in the largest cyanopolyynes. The two vibrational bands associated with the smallest frequencies are also studied and extrapolation equations are suggested to predict their positions in larger cyanopolyynes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Because of its electronic properties, sulfur plays a major role in a variety of metabolic processes and, more in general, in the chemistry of life. In particular, S-S bridges between cysteines are present in the amino acid backbone of proteins. Protein disulfur radical anions may decay following different paths through competing intra and intermolecular routes, including bond cleavage, disproportionation, protein-protein cross linking, and electron transfer. Indeed, mass spectrometry ECD (electron capture dissociation massspectroscopy) studies have shown that capture of low-energy (<0.2 eV) electrons by multiply protonated proteins is followed by dissociation of S-S bonds holding two peptide chains together. In view of the importance of organic sulfur chemistry, we report on electron interactions with disulphide bridges. To study these interactions we used as prototypes the molecules dimethyl sulfide [(CH3)2S] and dimethyl disulfide [(H3C)S2(CH3)]. We seek to better understand the electron-induced cleavage of the disulfide bond. To explore dissociative processes we performed electron scattering calculations with the Schwinger Multichannel Method with pseudopotentials (SMCPP), recently parallelized with OpenMP directives and optimized with subroutines for linear algebra (BLAS) and LAPACK routines. Elastic cross sections obtained for different S-S bond lengths indicate stabilization of the anion formed by electron attachment to a σ*SS antibonding orbital, such that dissociation would be expected.
Resumo:
In molecular and atomic devices the interaction between electrons and ionic vibrations has an important role in electronic transport. The electron-phonon coupling can cause the loss of the electron's phase coherence, the opening of new conductance channels and the suppression of purely elastic ones. From the technological viewpoint phonons might restrict the efficiency of electronic devices by energy dissipation, causing heating, power loss and instability. The state of the art in electron transport calculations consists in combining ab initio calculations via Density Functional Theory (DFT) with Non-Equilibrium Green's Function formalism (NEGF). In order to include electron-phonon interactions, one needs in principle to include a self-energy scattering term in the open system Hamiltonian which takes into account the effect of the phonons over the electrons and vice versa. Nevertheless this term could be obtained approximately by perturbative methods. In the First Born Approximation one considers only the first order terms of the electronic Green's function expansion. In the Self-Consistent Born Approximation, the interaction self-energy is calculated with the perturbed electronic Green's function in a self-consistent way. In this work we describe how to incorporate the electron-phonon interaction to the SMEAGOL program (Spin and Molecular Electronics in Atomically Generated Orbital Landscapes), an ab initio code for electronic transport based on the combination of DFT + NEGF. This provides a tool for calculating the transport properties of materials' specific system, particularly in molecular electronics. Preliminary results will be presented, showing the effects produced by considering the electron-phonon interaction in nanoscale devices.
Resumo:
We report cross sections for elastic electron scattering by gas phase glycine (neutral form), obtained with the Schwinger multichannel method. The present results are the first obtained with a new implementation that combines parallelization with OpenMP directives and pseudopotentials. The position of the well known pi* shape resonance ranged from 2.3 eV to 2.8 eV depending on the polarization model and conformer. For the most stable isomer, the present result (2.4 eV) is in fair agreement with electron transmission spectroscopy assignments (1.93 +/- 0.05 eV) and available calculations. Our results also point out a shape resonance around 9.5 eV in the A' symmetry that would be weakly coupled to vibrations of the hydroxyl group. Since electron attachment to a broad and lower lying sigma* orbital located on the OH bond has been suggested the underlying mechanism leading to dissociative electron attachment at low energies, we sought for a shape resonance around similar to 4 eV. Though we obtained cross sections with the target molecule at the equilibrium geometry and with stretched OH bond lengths, least-squares fits to the calculated eigenphase sums did not point out signatures of this anion state (though, in principle, it could be hidden in the large background). The low energy (similar to 1 eV) integral cross section strongly scales as the bond length is stretched, and this could indicate a virtual state pole, since dipole supported bound states are not expected at the geometries addressed here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687345]
Resumo:
Nowadays, there is a great interest in the economic success of direct ethanol fuel cells; however, our atomistic understanding of the designing of stable and low-cost catalysts for the steam reforming of ethanol is still far from satisfactory, in particular due to the large number of undesirable intermediates. In this study, we will report a first-principles investigation of the adsorption properties of ethanol and water at low coverage on close-packed transition-metal (TM) surfaces, namely, Fe(110), Co(0001), Ni(111), Cu(111), Ru(0001), Rh(111), Pd(111), Ag(111), Os(0001), Ir(111), Pt(111), and Au(111), employing density functional theory (DFT) calculations. We employed the generalized gradient approximation with the formulation proposed by Perdew, Burke, and Erzenholf (PBE) to the exchange correlation functional and the empirical correction proposed by S. Grimme (DFT+D3) for the van der Waals correction. We found that both adsorbates binds preferentially near or on the on top sites of the TM surfaces through the 0 atoms. The PBE adsorption energies of ethanol and water decreases almost linearly with the increased occupation of the 4d and 5d d-band, while there is a deviation for the 3d systems. The van der Waals correction affects the linear behavior and increases the adsorption energy for both adsorbates, which is expected as the van der Waals energy due to the correlation effects is strongly underestimated by DFT-PBE for weak interacting systems. The geometric parameters for water/TM are not affected by the van der Waals correction, i.e., both DFT and DFT+D3 yield an almost parallel orientation for water on the TM surfaces; however, DFT+D3 changes drastically the ethanol orientation. For example, DFT yields an almost perpendicular orientation of the C-C bond to the TM surface, while the C-C bond is almost parallel to the surface using DFT +D3 for all systems, except for ethanol/Fe(110). Thus, the van der Waals correction decreases the distance of the C atoms to the TM surfaces, which might contribute to break the C-C bond. The work function decreases upon the adsorption of ethanol and water, and both follow the same trends, however, with different magnitude (larger for ethanol/TM) due to the weak binding of water to the surface. The electron density increases mainly in the region between the topmost layer and the adsorbates, which explains the reduction of the substrate work function.
Resumo:
We report on the mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via e(+) e(-) decays, from root s = 200 GeV p + p collisions, measured by the large-acceptance experiment STAR at the Relativistic Heavy Ion Collider. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted omega -> e(+) e(-) invariant yields are consistent with previous measurements. The mid-rapidity yields (dN/dy) of phi and J/psi are extracted through their di-electron decay channels and are consistent with the previous measurements of phi -> K+ K- and J/psi -> e(+) e(-). Our results suggest a new upper limit of the branching ratio of the eta -> e(+) e(-) of 1.7 x 10(-5) at the 90% confidence level.
Resumo:
In this work, CaTiO3:Sm (CT:Sm) were prepared by a soft chemical processing at different annealing temperatures starting with a disordered structure and reaching an ordered one, with the propose to understand the relationship between structural order-disorder and photoluminescence emission. The samples were characterized by titanium K-edge, Titanium L-II and L-III-edge XANES, electron paramagnetic resonance (EPR) and photoluminescence (PL) measurements. XANES results clearly point the presence of local distortion in [TiO6] octahedral clusters until the crystallization was completed. The interactions of the network clusters that form the CT:Sm structures provides favorable structural and electronic conditions for the appearance of PL phenomena. (C) 2012 Published by Elsevier B.V.
Resumo:
Quantum chemical calculations at the B3LYP/6-31G* level of theory were employed for the structure-activity relationship and prediction of the antioxidant activity of edaravone and structurally related derivatives using energy (E), ionization potential (IP), bond dissociation energy (BDE), and stabilization energies(Delta E-iso). Spin density calculations were also performed for the proposed antioxidant activity mechanism. The electron abstraction is related to electron-donating groups (EDG) at position 3, decreasing the IP when compared to substitution at position 4. The hydrogen abstraction is related to electron-withdrawing groups (EDG) at position 4, decreasing the BDECH when compared to other substitutions, resulting in a better antioxidant activity. The unpaired electron formed by the hydrogen abstraction from the C-H group of the pyrazole ring is localized at 2, 4, and 6 positions. The highest scavenging activity prediction is related to the lowest contribution at the carbon atom. The likely mechanism is related to hydrogen transfer. It was found that antioxidant activity depends on the presence of EDG at the C-2 and C-4 positions and there is a correlation between IP and BDE. Our results identified three different classes of new derivatives more potent than edaravone.
Resumo:
A low energy electron may attach to a molecule, forming a metastable resonance, which may dissociate into a stable anion and a neutral radical. Chloromethane has been a good target for dissociative electron attachment studies, since it is a small molecule with a clear dissociative ‘sigma*’ shape resonance. We present potential energy curves for CH3Cl and its anion, as a function of the C-Cl distance. Due to the resonant nature of the anion, a correct description requires a treatment based on scattering calculations. In order to compute elastic cross sections and phase shifts we employed the Schwinger multichannel method, implemented with pseudopotentials of Bachelet, Hamann and Schlüter, at the static-exchange plus polarization approximation. At the equilibrium geometry, the resonance was found arround 3.3 eV, in accordance to experience. The incoming electron is captured by a ‘sigma*’ orbital located at the C-Cl bond, which will relax in the presence of this extra electron. We took this bond as the reaction coordinate, and performed several scattering calculations for a series of nuclear conformations. The phase shift obtained in each calculation was fitted by a two component function, consisting in the usual Breit-Wigner profile, which captures the resonant character, and a second order polynomial in the wave number, which accounts for the background contribution. That way, we obtained position and width of the resonance, which allowed us to build the potential energy curve. For larger distances, the anion becomes stable and usual electronic structure calculations suffice. Furthermore, the existence of a dipole-bound anion state is revealed when we employed a set of very diffuse functions. The knowledge on the behaviour of the neutral and anionic electronic states helps us in elucidating how the dissociation takes place.
Resumo:
Reactions initiated by collisions with low-energy secondary electrons has been found to be the prominent mechanism toward the radiation damage on living tissues through DNA strand breaks. Now it is widely accepted that during the interaction with these secondary species the selective breaking of chemical bonds is triggered by dissociative electron attachment (DEA), that is, the capture of the incident electron and the formation of temporary negative ion states [1,2,3]. One of the approaches largely used toward a deeper understanding of the radiation damage to DNA is through modeling of DEA with its basic constituents (nucleotide bases, sugar and other subunits). We have tried to simplify this approach and attempt to make it comprehensible at a more fundamental level by looking at even simple molecules. Studies involving organic systems such as carboxylic acids, alcohols and simple ¯ve-membered heterocyclic compounds are taken as starting points for these understanding. In the present study we investigate the role played by elastic scattering and electronic excitation of molecules on electron-driven chemical processes. Special attention is focused on the analysis of the in°uence of polarization and multichannel coupling e®ects on the magnitude of elastic and electronically inelastic cross-sections. Our aim is also to investigate the existence of resonances in the elastic and electronically inelastic channels as well as to characterize them with respect to its type (shape, core-excited or Feshbach), symmetry and position. The relevance of these issues is evaluated within the context of possible applications for the modeling of discharge environments and implications in the understanding of mutagenic rupture of DNA chains. The scattering calculations were carried out with the Schwinger multichannel method (SMC) [4] and its implementation with pseudopotentials (SMCPP) [5] at di®erent levels of approximation for impact energies ranging from 0.5 eV to 30 eV. References [1] B. Boudai®a, P. Cloutier, D. Hunting, M. A. Huels and L. Sanche, Science 287, 1658 (2000). [2] X. Pan, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 90, 208102 (2003). [3] F. Martin, P. D. Burrow, Z. Cai, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 93, 068101 (2004). [4] K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2437 (1981); ibid. Phys. Rev. A 30, 1734 (1984). [5] M. H. F. Bettega, L. G. Ferreira and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993).
Resumo:
The energetic stability and the electronic properties of vacancies (VX) and antisites (XY) in PbSe and PbTe are investigated. PbSe and PbTe are narrow band gap semiconductors and have the potential to be used in infrared detectors, laser, and diodes. They are also of special interest for thermoelectric devices (TE). The calculations are based in the Density Functional Theory (DFT) and the General Gradient Approximation (GGA) for the exchange-correlation term, as implemented in the VASP code. The core and valence electrons are described by the Projected Augmented Wave (PAW) and the Plane Wave (PW) methods, respectively. The defects are studied in the bulk and nanowire (NW) system. Our results show that intrinsec defects (vacancies and antisites) in PbTe have lower formation energies in the NW as compared to the bulk and present a trend in migrate to the surface of the NW. For the PbSe we obtain similar results when compare the formation energy for the bulk and NW. However, the Pb vacancy and the antisites are more stable in the core of the NW. The intrinsec defects are shallow defects for the bulk system. For both PbSe and PbTe VPb is a shallow acceptor defect and VSe and VT e are shallow donor defects for the PbSe and PbTe, respectively. Similar electronic properties are observed for the antisites. For the Pb in the anion site we obtain an n-type semiconductor for both PbSe and PbTe, SeP b is a p-type for the PbSe, and T eP b is a n-type for PbTe. Due the quantum con¯nement effects present in the NW (the band gap open), these defects have different electronic properties for the NW as compared to the bulk. Now these defects give rise to electronic levels in the band gap of the PbTe NW and the VT e present a metallic character. For the PbSe NW a p-type and a n-type semiconductor is obtained for the VP b and P bSe, respectively. On the other hand, deep electronic levels are present in the band gap for the VSe and SePb. These results show that due an enhanced in the electronic density of states (DOS) near the Fermi energy, the defective PbSe and PbTe are candidates for efficient TE devices.