9 resultados para Electromagnetic wave propagation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

An exact expression is derived for the time-averaged electromagnetic energy within a magneto-dielectric coated sphere, which is irradiated by a plane and time-harmonic electromagnetic wave. Both the spherical shell and core are considered to be dispersive and lossy, with a realistic dispersion relation of an isotropic split-ring resonator metamaterial. We obtain analytical expressions for the stored electromagnetic energies inside the core and the shell separately and calculate their contributions to the total average energy density. The stored electromagnetic energy is calculated for two situations involving a metamaterial coated sphere: a dielectric shell and dispersive metamaterial core, and vice versa. An explicit relation between the stored energy and the optical absorption efficiency is also obtained. We show that the stored electromagnetic energy is an observable sensitive to field interferences responsible for the Fano effect. This result, together with the fact that the Fano effect is more likely to occur in metamaterials with negative refraction, suggest that our findings may be explored in applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we analyze the problem of light-matter interaction when absorptive resonances are imbedded in the material dispersion. We apply an improved approach to aluminum (Al) in the optical frequency range to investigate the impact of these resonances on the operating characteristics of Al-based nanoscale devices. Quantities such as group velocity, stored energy density, and energy velocity, normally obtained using a single resonance model [Wave Propagation and Group Velocity (Academic Press, 1960), Nat. Mater. 11, 208 (2012)], are now accurately calculated regardless of the medium adopted. We adapt the Loudon approach [Nat. Mater. 11, 208 (2012)] to media with several optical resonances and present the details of the extended model. We also show pertinent results for Al-based metal-dielectric-metal (MDM) waveguides, around spectral resonances. The model delineated here can be applied readily to any metal accurately characterized by Drude-Lorentz spectral resonance features. (C) 2012 Optical Society of America

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a systematic investigation by the discrete dipole approximation on the optical properties of silver (Ag) and gold (Au) nanocubes as a function of the edge length in the 20-100 nm range. Our results showed that, as the nanocube size increased, the plasmon resonance modes shifted to higher wavelengths, the contribution from scattering to the extinction increased, and the quadrupole modes became more intense in the spectra. The electric field amplitudes at the surface of the nanocubes were calculated considering 514, 633 and 785 nm as the excitation wavelengths. While Ag nanocubes displayed the highest electric field amplitudes (vertical bar E vertical bar(max)) when excited at 514 nm, the Au nanocubes displayed higher vertical bar E vertical bar(max) values than Ag, for all sizes investigated, when the excitation wavelength was either 633 or 785 nm. The variations in vertical bar E vertical bar(max) as a function of size for both Ag and Au nanocubes could be explained based on the relative position of the surface plasmon resonance peak relative to the wavelength of the incoming electromagnetic wave. Our results show that not only size and composition, but also the excitation wavelength, can play an important role over the maximum near-field amplitudes values generated at the surface of the nanocubes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the numerical solution of complex fluid dynamics problems using a new bounded high resolution upwind scheme (called SDPUS-C1 henceforth), for convection term discretization. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite volume/difference methodologies, either into the CLAWPACK software package for compressible flows or in the Freeflow simulation system for incompressible viscous flows. The performance of the proposed upwind non-oscillatory scheme is demonstrated by solving two-dimensional compressible flow problems, such as shock wave propagation and two-dimensional/axisymmetric incompressible moving free surface flows. The numerical results demonstrate that this new cell-interface reconstruction technique works very well in several practical applications. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method for electromagnetic torque ripple and copper losses reduction in (non-sinusoidal or trapezoidal) surface-mount permanent magnet synchronous machines (SM-PMSM). The method is based on an extension of classical dq transformation that makes it possible to write a vectorial model for this kind of machine (with a non-sinusoidal back-EMF waveform). This model is obtained by the application of that transformation in the classical machine per-phase model. That transformation can be applied to machines that have any type of back-EMF waveform, and not only trapezoidal or square-wave back-EMF waveforms. Implementation results are shown for an electrical converter, using the proposed vectorial model, feeding a non-sinusoidal synchronous machine (brushless DC motor). They show that the use of this vectorial mode is a way to achieve improvements in the performance of this kind of machine, considering the electromagnetic torque ripple and copper losses, if compared to a drive system that employs a classical six-step mode as a converter. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A charged particle is considered in a complex external electromagnetic field. The field is a superposition of an Aharonov-Bohm field and some additional field. Here we describe all additional fields known up to the present time that allow exact solution of the Schrodinger equation in a complex field.