10 resultados para Electromagnetic Vibration Energy Harvesting

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of piezoelectric materials for the development of electromechanical devices for the harvesting or scavenging of ambient vibrations has been extensively studied over the last decade. The energy conversion from mechanical (vibratory) to electrical energy is provided by the electromechanical coupling between mechanical strains/stresses and electric charges/voltages in the piezoelectric material. The majority of the studies found in the open literature present a tip-mass cantilever piezoelectric device tuned on the operating frequency. Although recent results show that these devices can be quite effective for harvesting small amounts of electrical energy, little has been published on the robustness of these devices or on the effect of parametric uncertainties on the energy harvested. This work focuses on a cantilever plate with bonded piezoelectric patches and a tip-mass serving as an energy harvesting device. The rectifier and storage electric circuit was replaced by a resistive circuit (R). In addition, an alternative to improve the harvesting performance by adding an inductance in series to the harvesting circuit, thus leading to a resonant circuit (RL), is considered. A coupled finite element model leading to mechanical (displacements) and electrical (charges at electrodes) degrees of freedom is considered. An analysis of the effect of parametric uncertainties of the device on the electric output is performed. Piezoelectric and dielectric constants of the piezoelectric active layers and electric circuit equivalent inductance are considered as stochastic parameters. Mean and confidence intervals of the electric output are evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An exact expression is derived for the time-averaged electromagnetic energy within a magneto-dielectric coated sphere, which is irradiated by a plane and time-harmonic electromagnetic wave. Both the spherical shell and core are considered to be dispersive and lossy, with a realistic dispersion relation of an isotropic split-ring resonator metamaterial. We obtain analytical expressions for the stored electromagnetic energies inside the core and the shell separately and calculate their contributions to the total average energy density. The stored electromagnetic energy is calculated for two situations involving a metamaterial coated sphere: a dielectric shell and dispersive metamaterial core, and vice versa. An explicit relation between the stored energy and the optical absorption efficiency is also obtained. We show that the stored electromagnetic energy is an observable sensitive to field interferences responsible for the Fano effect. This result, together with the fact that the Fano effect is more likely to occur in metamaterials with negative refraction, suggest that our findings may be explored in applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success of magnetic hyperthermia cancer treatments rely strongly on the magnetic properties of the nanoparticles and their intricate dependence on the externally applied field. This is particularly more so as the response departs from the low field linear regime. In this paper we introduce a new parameter, referred to as the efficiency in converting electromagnetic energy into thermal energy, which is shown to be remarkably useful in the analysis of the system response, especially when the power loss is investigated as a function of the applied field amplitude. Using numerical simulations of dynamic hysteresis, through the stochastic Landau-Lifshitz model, we map in detail the efficiency as a function of all relevant parameters of the system and compare the results with simple-yet powerful-predictions based on heuristic arguments about the relaxation time. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705392]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of vortex-induced vibration on very short cylinders with two degrees of freedom has drawn the attention of a large number of researchers. Some investigations on such a problem are carried out in order to have a better understanding of the physics involved in vortex-induced motions of floating bodies such as offshore platforms. In this paper, experiments were carried out in a recirculating water channel over the range of Reynolds number 6000energy transferring process from the steady stream to the oscillatory hydroelastic system. Finally, it is noteworthy that the characteristic of the “Strouhal-like” number decreases when the aspect ratio decreases, as also observed in previous works available in the literature, most of them for stationary cylinders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a pair of tandem cylinders is immersed in a flow the downstream cylinder can be excited into wake-induced vibrations (WIV) due to the interaction with vortices coming from the upstream cylinder. Assi, Bearman & Meneghini ( J. Fluid Mech. , vol. 661, 2010, pp. 365–401) concluded that the WIV excitation mechanism has its origin in the unsteady vortex–structure interaction encountered by the cylinder as it oscillates across the wake. In the present paper we investigate how the cylinder responds to that excitation, characterising the amplitude and frequency of response and its dependency on other parameters of the system. We introduce the concept of wake stiffness , a fluid dynamic effect that can be associated, to a first approximation, with a linear spring with stiffness proportional to Re and to the steady lift force occurring for staggered cylinders. By a series of experiments with a cylinder mounted on a base without springs we verify that such wake stiffness is not only strong enough to sustain oscillatory motion, but can also dominate over the structural stiffness of the system. We conclude that while unsteady vortex–structure interactions provide the energy input to sustain the vibrations, it is the wake stiffness phenomenon that defines the character of the WIV response

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of vortex-induced vibration on very short cylinders with two degrees of freedom has drawn the attention of a large number of researchers. Some investigations on such a problem are carried out in order to have a better understanding of the physics involved in vortex-induced motions of floating bodies such as offshore platforms. In this paper, experiments were carried out in a recirculating water channel over the range of Reynolds number 6000energy transferring process from the steady stream to the oscillatory hydroelastic system. Finally, it is noteworthy that the characteristic of the “Strouhal-like” number decreases when the aspect ratio decreases, as also observed in previous works available in the literature, most of them for stationary cylinders.