14 resultados para Electro

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of in situ IR spectroscopy we investigate the effect of dissolved alkali cations on the electro-oxidation of ethylene glycol on platinum in alkaline media. The results revealed that the increase in the oxidation currents (Li(+) < Na(+) < K(+)) is reflected in the increase in the ratio between carbonate and oxalate produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a simple and environmentally friendly synthesis of gold nanoparticles (AuNps) and their electrocatalytic activity for borohydride oxidation reaction (BOR). Ultraviolet spectroscopy (UV- vis) and transmission electron microscopy (TEM) confirmed the formation of poly(vinyl pyrrolidone)protected colloidal AuNps through direct reduction of Au3+ by glycerol in alkaline medium at room temperature. For the BOR tests the AuNps were directly produced onto carbon to yield the Au/C catalyst. Levich plots revealed that the process occured via 7.2 electrons, therefore near the theoretical value of 8 electrons. When compared to bulk Au, the gold nanoparticles presented enhanced catalytic properties since the onset potential for BOR was shifted 200 mV towards negative potentials. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 20% Pt3Sn/C catalyst was prepared by reduction with formic acid and used in a direct ethanol fuel cell at low temperatures. The electro-catalytic activity of this bimetallic catalyst was compared to that of a commercial 20% Pt/C catalyst. The PtSn catalyst showed better results in the investigated temperature range (30 degrees-70 degrees C). Generally, Sn promotes ethanol oxidation by adsorption of OH species at considerably lower potentials compared to Pt, allowing the occurrence of a bifunctional mechanism. The bimetallic catalyst was physico-chemically characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The presence of SnO2 in the bulk and surface of the catalyst was observed. It appears that SnO2 can enhance the ethanol electro-oxidation activity at low potentials due to the supply of oxygen-containing species for the oxidative removal of CO and CH3CO species adsorbed on adjacent Pt active sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electro-oxidation of ethanol was investigated on electrodeposited layers of Pd, Pt, and Rh in alkaline electrolyte. The reaction products were monitored by experiments of online differential electrochemical mass spectrometry (DEMS). Potentiodynamic curves for the ethanol electro-oxidation catalyzed by these three different metal electrocatalysts showed similar onset potentials, but the highest Faradaic current peak was observed for the Pt electrocatalyst. Online DEMS experiments evidenced similar amounts of CO2 for the three different materials, but Pd presented the higher production of ethylacetate (acetic acid). This indicated that the electrochemical oxidation of ethanol on the Pd surface occurred to a higher extent. The formation of methane, which was observed for Pt and Rh, after potential excursions to lower potentials, was absent for Pd. On the basis of the obtained results, it was stated that, on Pt and Rh, the formation of CO2 occurs mainly via oxidation of CO and CH (x,ad) species formed after dissociative adsorption of ethanol or ethoxy species that takes place only at low potentials. This indicates that the dissociative adsorption of ethanol or ethoxy species is inhibited at higher potentials on Pt and Rh. On the other hand, on the Pd electrocatalyst, the reaction may occur via nondissociative adsorption of ethanol or ethoxy species at lower potentials, followed by oxidation to acetaldehyde and, after that, by a further oxidation step to acetic acid on the electrocatalyst surface. Additionally, in a parallel route, the acetaldehyde molecules adsorbed on the Pd surface can be deprotonated, yielding a reaction intermediate in which the carbon-carbon bond is less protected, and therefore, it can be dissociated on the Pd surface, producing CO2, after potential excursions to higher potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ethanol electro-oxidation reaction was studied on carbon-supported Pt, Rh, and on Pt overlayers deposited on Rh nanoparticles. The synthesized electrocatalysts were characterized by TEM and XRD. The reaction products were monitored by on-line DEMS experiments. Potentiodynamic curves showed higher overall reaction rate for Pt/C when compared to that for Rh/C. However, on-line DEMS measurements revealed higher average current efficiencies for complete ethanol electro-oxidation to CO2 on Rh/C. The average current efficiencies for CO2 formation increased with temperature and with the decrease in the ethanol concentration. The total amount of CO2, on the other hand, was slightly affected by the temperature and ethanol concentration. Additionally, the CO2 signal was observed only in the positive-going scan, none being observed in the negative-going scan, evidencing that the C-C bond breaking occurs only at lower potentials. Thus, the formation of CO2 mainly resulted from oxidative removal of adsorbed CO and CHx,ad species generated at the lower potentials, instead of the electrochemical oxidation of bulk ethanol molecules. The acetaldehyde mass signal, however, was greatly favored after increasing the ethanol concentration from 0.01 to 0.1 mol L-1, on both electrocatalysts, indicating that it is the major reaction product. For the Pt/Rh/C-based electrocatalysts, the Faradaic current and the conversion efficiency for CO2 formation was increased by adjusting the amount of Pt on the surface of the Rh/C nanoparticles. The higher conversion efficiency for CO2 formation on the Pt1Rh/C material was ascribed to its faster and more extensive ethanol deprotonation on the Pt-Rh sites, producing adsorbed intermediates in which the C-C bond cleavage is facilitated. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As in the case of most small organic molecules, the electro-oxidation of methanol to CO2 is believed to proceed through a so-called dual pathway mechanism. The direct pathway proceeds via reactive intermediates such as formaldehyde or formic acid, whereas the indirect pathway occurs in parallel, and proceeds via the formation of adsorbed carbon monoxide (COad). Despite the extensive literature on the electro-oxidation of methanol, no study to date distinguished the production of CO2 from direct and indirect pathways. Working under, far-from-equilibrium, oscillatory conditions, we were able to decouple, for the first time, the direct and indirect pathways that lead to CO2 during the oscillatory electro-oxidation of methanol on platinum. The CO2 production was followed by differential electrochemical mass spectrometry and the individual contributions of parallel pathways were identified by a combination of experiments and numerical simulations. We believe that our report opens some perspectives, particularly as a methodology to be used to identify the role played by surface modifiers in the relative weight of both pathways-a key issue to the effective development of catalysts for low temperature fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article aims to develop and implement a search tool which, through the perception of its respondents, allows assessing how eco-efficient an organization is based on the identification of delivery levels of support competencies to organizational eco-efficiency. A mixed (qualitative and quantitative) exploratory-descriptive research was conducted, from a case study in an 'ISE Company'. A semi-structured interview and pictures of verification were used as data collection instruments. The data were analyzed via documentary analysis and triangulation of information collected. It was inferred that at the 'ISE Company' professionals at the high-level of the organizational hierarchy recognize, in part, the growth of organizational actions that contribute to sustainability, which is not fully consistent with national publications on the subject. The result of the research showed that organizational strategies addressing eco-efficiency are partially aligned with the professional performance of the organization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present results on the electro-oxidation of ethanol on unsupported (carbon free) platinum nanoparticles, considering the effects of the alcohol concentration. The case of the so-called dual pathway mechanism during the electro-oxidation of ethanol showed to be influenced by the surface coverage of adsorbed carbon monoxide (COad) at unsupported platinum. The influences of adsorbed intermediates were followed by in situ infrared spectroscopy (FTIR) and by electrochemical experiments. Unsupported platinum showed that the reaction leads to the formation of CO2 and acetic acid as main products at low concentrations of ethanol (0.01 to 0.1 mol L-1). At least in this case of 0.01 mol L-1 ethanol, most formation of CO2 occurred via COad (indirect pathway). At higher concentration of ethanol, however, most CO2 was formed via a reactive intermediate such as acetaldehyde (direct pathway). In addition, in this higher concentration of ethanol, the acetic acid was produced via formation of adsorbed acetaldehyde (via acetate) at higher overpotentials. In case of the acetic acid formation, a dual pathway was identified during the electro-oxidation of ethanol at low alcohol concentrations, whereas a parallel pathway occurred without the formation of adsorbed acetate intermediates at low overpotentials. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.101203jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms through which electro-acupuncture (EA) and tricyclic antidepressants produce analgesia seem to be complementary: EA inhibits the transmission of noxious messages by activating supraspinal serotonergic and noradrenergic neurons that project to the spinal cord, whereas tricyclic antidepressants affect pain transmission by inhibiting the reuptake of norepinephrine and serotonin at the spinal level. This study utilized the tail-flick test and a model of post-incision pain to compare the antihyperalgesic effects of EA at frequencies of 2 or 100 Hz in rats treated with intraperitoneal or intrathecal amitriptyline (a tricyclic antidepressant). A gradual increase in the tail-flick latency (TFL) occurred during a 20-min period of EA. A strong and long-lasting reduction in post-incision hyperalgesia was observed after stimulation; the effect after 2 Hz lasting longer than after 100-Hz EA. Intraperitoneal or intrathecal amitriptyline potentiated the increase in TFL in the early moments of 2- or 100-Hz EA, and the intensity of the antihyperalgesic effect of 100-Hz EA in both the incised and non-incised paw. In contrast, it did not significantly change the intensity of the antihyperalgesic effect of 2-Hz EA. The EA-induced antihyperalgesic effects lasted longer after intraperitoneal or intrathecal amitriptyline than after saline, with this effect of amitriptyline being more evident after 100-than after 2-Hz EA. The synergetic effect of amitriptyline and EA against post-incision pain shown here may therefore represent an alternative for prolonging the efficacy of EA in the management of post-surgical clinical pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the experimental study of the oscillatory electro-oxidation of glycerol on platinum under galvanostatic control. The system was investigated in both acidic and alkaline media and for different glycerol concentrations. In acidic supporting electrolyte, the oscillatory behavior is rather simple and the main features such as period, amplitude and waveform are barely affected by the glycerol concentration. A more complex picture including the presence of different temporal patterns and strong dependence with glycerol concentration emerges in alkaline medium. In both media, the composite oscillations visit two clearly discernible potential windows, and potential oscillations in alkaline media are observed only when the working electrode is kept stationary. The mechanistic implications of our findings are discussed in connection with available data obtained under close-to-equilibrium conditions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon supported Pt-Sn catalysts were prepared by reduction of Pt and Sn precursors with formic acid and characterized in terms of structure, morphology and surface properties. The electrocatalytic activity for ethanol oxidation was studied in a direct ethanol fuel cell (DEFC) at 70 degrees C and 90 degrees C. Electrochemical and physico-chemical data indicated that a proper balance of Pt and Sn species in the near surface region was necessary to maximize the reaction rate. The best atomic surface composition, in terms of electrochemical performance, was Pt:Sn 65:35 corresponding to a bulk composition 75:25 namely Pt3Sn1/C. The reaction products of ethanol electro-oxidation in single cell and their distribution as a function of the nature of catalyst were determined. Essentially, acetaldehyde and acetic acid were detected as the main reaction products; whereas, a lower content of CO2 was formed. The selectivity toward acetic acid vs. acetaldehyde increased with the increase of the Sn content and decreased by decreasing the concentration of the reducing agent used in the catalyst preparation. According to the recent literature, these results have been interpreted on the basis of ethanol adsorption characteristics and ligand effects occurring for Sn-rich electrocatalysts. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the electrochemical oxidation of glycerol on low-index Pt single crystals in acidic media (H2SO4 and HClO4) by cyclic voltammetry and Fourier Transform Infrared (FTIR) spectroscopy and we verified that this is a surface sensitive reaction. Pt(100) and Pt(110) surface structures favor the breaking of the C-C-C bond at low potentials (say 0.05 V), as seen by the formation of CO, one of the adsorbed residues of the glycerol dissociation, which poisons these surfaces even at high potentials. Pt(111) surface structure does not favor the C-C-C bond breaking at potentials as low as 0.05 V. However, Pt(111) is less poisoned by residues of glycerol dissociation and, for this reason, it is more active for glycerol oxidation than Pt(100) and Pt(110) at low potentials. Carbonyl containing compounds and CO2 were detected as reaction products of the glycerol oxidation on all investigated single-crystal Pt surfaces. The ratio between CO2 and carbonyl containing compounds is clearly much higher for Pt(100) and Pt(110) than for Pt(111). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although electrochemical oxidation of simple organic molecules on metal catalysts is the basic ingredient of fuel cells, which have great technological potential as a renewable source of electrical energy, the detailed reaction mechanisms are in most cases not completely understood. Here, we investigate the ethanol-platinum interface in acidic aqueous solution using infrared-visible sum frequency generation (SFG) spectroscopy and theoretical calculations of vibrational spectra in order to identify the intermediates present during the electro-oxidation of ethanol. The complex vibrational spectrum in the fingerprint region imply on the coexistence of several adsorbates. Based on spectra in ultra-high-vacuum (UHV) and electrochemical environment from the literature and our density functional theory (DFT) calculations of vibrational spectra, new adsorbed intermediates, never before observed with conventional infrared (IR) spectroscopy, are proposed here: g2-acetaldehyde, g2-acetyl, ethylidyne, monodentate acetate, methoxy, tertiary methanol derivative, COH residue, g2-formaldehyde, mono and bidentate formate, CH3 and CH2 residues. In addition, we present new evidences for an ethoxy intermediate, a secondary ethanol derivative and an acetyl species, and we confirm the presence of previously observed adsorbates: a tertiary ethanol derivative, bidentate acetate, and COad. These results indicate that the platinum surface is much more reactive, and the reaction mechanism for ethanol electro-oxidation is considerably more complex than previously considered. This might be also true for many other molecule-catalyst systems.