14 resultados para Electrical impedance tomography, Calderon problem, factorization method
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Electrical impedance tomography (EIT) is an imaging technique that attempts to reconstruct the impedance distribution inside an object from the impedance between electrodes placed on the object surface. The EIT reconstruction problem can be approached as a nonlinear nonconvex optimization problem in which one tries to maximize the matching between a simulated impedance problem and the observed data. This nonlinear optimization problem is often ill-posed, and not very suited to methods that evaluate derivatives of the objective function. It may be approached by simulated annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, which involves a full simulation of the impedance problem at each iteration. A variation of SA is proposed in which the objective function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.
Resumo:
Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.
Resumo:
A direct reconstruction algorithm for complex conductivities in W-2,W-infinity(Omega), where Omega is a bounded, simply connected Lipschitz domain in R-2, is presented. The framework is based on the uniqueness proof by Francini (2000 Inverse Problems 6 107-19), but equations relating the Dirichlet-to-Neumann to the scattering transform and the exponentially growing solutions are not present in that work, and are derived here. The algorithm constitutes the first D-bar method for the reconstruction of conductivities and permittivities in two dimensions. Reconstructions of numerically simulated chest phantoms with discontinuities at the organ boundaries are included.
Resumo:
Breathing moves volumes of electrically insulating air into and out of the lungs, producing conductivity changes which can be seen by electrical impedance tomography (EIT). It has thus been apparent, since the early days of EIT research, that imaging of ventilation could become a key clinical application of EIT. In this paper, we review the current state and future prospects for lung EIT, by a synthesis of the presentations of the authors at the 'special lung sessions' of the annual biomedical EIT conferences in 2009-2011. We argue that lung EIT research has arrived at an important transition. It is now clear that valid and reproducible physiological information is available from EIT lung images. We must now ask the question: How can these data be used to help improve patient outcomes? To answer this question, we develop a classification of possible clinical scenarios in which EIT could play an important role, and we identify clinical and experimental research programmes and engineering developments required to turn EIT into a clinically useful tool for lung monitoring.
Resumo:
Objective: To observe the behavior of the plotted vectors on the RXc (R - resistance - and Xc - reactance corrected for body height/length) graph through bioelectrical impedance analysis (BIVA) and phase angle (PA) values in stable premature infants, considering the hypothesis that preterm infants present vector behavior on BIVA suggestive of less total body water and soft tissues, compared to reference data for term infants. Methods: Cross-sectional study, including preterm neonates of both genders, in-patients admitted to an intermediate care unit at a tertiary care hospital. Data on delivery, diet and bioelectrical impedance (800 mA, 50 kHz) were collected. The graphs and vector analysis were performed with the BIVA software. Results: A total of 108 preterm infants were studied, separated according to age (< 7 days and >= 7 days). Most of the premature babies were without the normal range (above the 95% tolerance intervals) existing in literature for term newborn infants and there was a tendency to dispersion of the points in the upper right quadrant, RXc plan. The PA was 4.92 degrees (+/- 2.18) for newborns < 7 days and 4.34 degrees (+/- 2.37) for newborns >= 7 days. Conclusion: Premature infants behave similarly in terms of BIVA and most of them have less absolute body water, presenting less fat free mass and fat mass in absolute values, compared to term newborn infants.
Resumo:
This new and general method here called overflow current switching allows a fast, continuous, and smooth transition between scales in wide-range current measurement systems, like electrometers. This is achieved, using a hydraulic analogy, by diverting only the overflow current, such that no slow element is forced to change its state during the switching. As a result, this approach practically eliminates the long dead time in low-current (picoamperes) switching. Similar to a logarithmic scale, a composition of n adjacent linear scales, like a segmented ruler, measures the current. The use of a linear wide-range system based on this technique assures fast and continuous measurement in the entire range, without blind regions during transitions and still holding suitable accuracy for many applications. A full mathematical development of the method is given. Several computer realistic simulations demonstrated the viability of the technique.
Resumo:
The authors present a prospective study on the coexistence of spinal injury (SI) and severe traumatic brain injury (TBI) in patients who were involved in traffic accidents and arrived at the Emergency Department of Hospital das Clinicas of the University of Sao Paulo between September 1, 2003 and December 31, 2009. A whole-body computed tomography was the diagnostic method employed in all cases. Both lesions were observed simultaneously in 69 cases (19.4%), predominantly in males (57 individuals, 82.6%). Cranial injuries included epidural hematoma, acute subdural hematoma, brain contusion, ventricular hemorrhage and traumatic subarachnoid hemorrhage. The transverse processes were the most fragile portion of the vertebrae and were more susceptible to fractures. The seventh cervical vertebra was the most commonly affected segment, with 24 cases (34.78%). The distribution of fractures was similar among the other cervical vertebrae, the first four thoracic vertebrae and the lumbar spine. Neurological deficit secondary to SI was detected in eight individuals (11.59%) and two individuals (2.89%) died. Traumatic subarachnoid hemorrhage was the most common intracranial finding (82.6%). Spinal surgery was necessary in 24 patients (34.78%) and brain surgery in 18 (26%). Four patients (5.79%) underwent cranial and spinal surgeries. The authors conclude that it is necessary a judicious assessment of the entire spine of individuals who presented in coma after suffering a brain injury associated to multisystemic trauma and whole-body CT scan may play a major role in this scenario.
Resumo:
Chitosan/poly(vinyl sulfonic acid) (PVS) films have been prepared on Nafion® membranes by the layer-by-layer (LbL) method for use in direct methanol fuel cell (DMFC). Computational methods and Fourier transform infrared (FTIR) spectra suggest that an ionic pair is formed between the sulfonic group of PVS and the protonated amine group of chitosan, thereby promoting the growth of LbL films on the Nafion® membrane as well as partial blocking of methanol. Chronopotentiometry and potential linear scanning experiments have been carried out for investigation of methanol crossover through the Nafion® and chitosan/PVS/Nafion® membranes in a diaphragm diffusion cell. On the basis of electrical impedance measurements, the values of proton resistance of the Nafion® and chitosan/PVS/Nafion® membranes are close due to the small thickness of the LbL film. Thus, it is expected an improved DMFC performance once the additional resistance of the self-assembled film is negligible compared to the result associated with the decrease in the crossover effect.
Resumo:
Objective: Based on evidence showing that electrical stimulation of the nervous system is an effective method to decrease chronic neurogenic pain, we aimed to investigate whether the combination of 2 methods of electrical stimulation-a method of peripheral stimulation [transcutaneous electrical nerve stimulation (TENS)] and a method of noninvasive brain stimulation (transcranial direct current stimulation (tDCS)]-induces greater pain reduction as compared with tDCS alone and sham stimulation. Methods: We performed a preliminary, randomized, sham-controlled, crossover, clinical study in which 8 patients were randomized to receive active tDCS/active TENS (""tDCS/TENS"" group), active tDCS/sham TENS (""tDCS"" group), and sham tDCS/sham TENS (""sham"" group) stimulation. Assessments were performed immediately before and after each condition by a blinded rater. Results: The results showed that there was a significant difference in pain reduction across the conditions Of stimulation (P = 0.006). Post hoc tests showed significant pain reduction as compared with baseline after the tDCS/TENS condition [reduction by 36.5% (+/- 10.7), P = 0.004] and the tDCS condition [reduction by 15.5% (+/- 4.9), P = 0.014], but not after sham stimulation (P = 0.35). In addition, tDCS/TENS induced greater pain reduction than tDCS (P = 0.02). Conclusions: The results of this pilot study suggest that the combination of TENS with tDCS has a superior effect compared with tDCS alone.
Resumo:
Determination of the utility harmonic impedance based on measurements is a significant task for utility power-quality improvement and management. Compared to those well-established, accurate invasive methods, the noninvasive methods are more desirable since they work with natural variations of the loads connected to the point of common coupling (PCC), so that no intentional disturbance is needed. However, the accuracy of these methods has to be improved. In this context, this paper first points out that the critical problem of the noninvasive methods is how to select the measurements that can be used with confidence for utility harmonic impedance calculation. Then, this paper presents a new measurement technique which is based on the complex data-based least-square regression, combined with two techniques of data selection. Simulation and field test results show that the proposed noninvasive method is practical and robust so that it can be used with confidence to determine the utility harmonic impedances.
Resumo:
In this paper, a new algebraic-graph method for identification of islanding in power system grids is proposed. The proposed method identifies all the possible cases of islanding, due to the loss of a equipment, by means of a factorization of the bus-branch incidence matrix. The main features of this new method include: (i) simple implementation, (ii) high speed, (iii) real-time adaptability, (iv) identification of all islanding cases and (v) identification of the buses that compose each island in case of island formation. The method was successfully tested on large-scale systems such as the reduced south Brazilian system (45 buses/72 branches) and the south-southeast Brazilian system (810 buses/1340 branches). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
There is no consensus regarding the accuracy of bioimpedance for the determination of body composition in older persons. This study aimed to compare the assessment of lean body mass of healthy older volunteers obtained by the deuterium dilution method (reference) with those obtained by two frequently used bioelectrical impedance formulas and one formula specifically developed for a Latin-American population. A cross-sectional study. Twenty one volunteers were studied, 12 women, with mean age 72 +/- 6.7 years. Urban community, Ribeiro Preto, Brazil. Fat free mass was determined, simultaneously, by the deuterium dilution method and bioelectrical impedance; results were compared. In bioelectrical impedance, body composition was calculated by the formulas of Deuremberg, Lukaski and Bolonchuck and Valencia et al. Lean body mass of the studied volunteers, as determined by bioelectrical impedance was 37.8 +/- 9.2 kg by the application of the Lukaski e Bolonchuk formula, 37.4 +/- 9.3 kg (Deuremberg) and 43.2 +/- 8.9 kg (Valencia et. al.). The results were significantly correlated to those obtained by the deuterium dilution method (41.6 +/- 9.3 Kg), with r=0.963, 0.932 and 0.971, respectively. Lean body mass obtained by the Valencia formula was the most accurate. In this study, lean body mass of older persons obtained by the bioelectrical impedance method showed good correlation with the values obtained by the deuterium dilution method. The formula of Valencia et al., developed for a Latin-American population, showed the best accuracy.
Resumo:
This paper addresses the m-machine no-wait flow shop problem where the set-up time of a job is separated from its processing time. The performance measure considered is the total flowtime. A new hybrid metaheuristic Genetic Algorithm-Cluster Search is proposed to solve the scheduling problem. The performance of the proposed method is evaluated and the results are compared with the best method reported in the literature. Experimental tests show superiority of the new method for the test problems set, regarding the solution quality. (c) 2012 Elsevier Ltd. All rights reserved.