26 resultados para Electrical engineering|Artificial intelligence

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes, such as leaves surfaces, terrains models, etc. In this paper, we propose a novel approach based on the fractal dimension for color texture analysis. The proposed approach investigates the complexity in R, G and B color channels to characterize a texture sample. We also propose to study all channels in combination, taking into consideration the correlations between them. Both these approaches use the volumetric version of the Bouligand-Minkowski Fractal Dimension method. The results show a advantage of the proposed method over other color texture analysis methods. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are some variants of the widely used Fuzzy C-Means (FCM) algorithm that support clustering data distributed across different sites. Those methods have been studied under different names, like collaborative and parallel fuzzy clustering. In this study, we offer some augmentation of the two FCM-based clustering algorithms used to cluster distributed data by arriving at some constructive ways of determining essential parameters of the algorithms (including the number of clusters) and forming a set of systematically structured guidelines such as a selection of the specific algorithm depending on the nature of the data environment and the assumptions being made about the number of clusters. A thorough complexity analysis, including space, time, and communication aspects, is reported. A series of detailed numeric experiments is used to illustrate the main ideas discussed in the study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The attributes describing a data set may often be arranged in meaningful subsets, each of which corresponds to a different aspect of the data. An unsupervised algorithm (SCAD) that simultaneously performs fuzzy clustering and aspects weighting was proposed in the literature. However, SCAD may fail and halt given certain conditions. To fix this problem, its steps are modified and then reordered to reduce the number of parameters required to be set by the user. In this paper we prove that each step of the resulting algorithm, named ASCAD, globally minimizes its cost-function with respect to the argument being optimized. The asymptotic analysis of ASCAD leads to a time complexity which is the same as that of fuzzy c-means. A hard version of the algorithm and a novel validity criterion that considers aspect weights in order to estimate the number of clusters are also described. The proposed method is assessed over several artificial and real data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that control systems are the core of electronic differential systems (EDSs) in electric vehicles (EVs)/hybrid HEVs (HEVs). However, conventional closed-loop control architectures do not completely match the needed ability to reject noises/disturbances, especially regarding the input acceleration signal incoming from the driver's commands, which makes the EDS (in this case) ineffective. Due to this, in this paper, a novel EDS control architecture is proposed to offer a new approach for the traction system that can be used with a great variety of controllers (e. g., classic, artificial intelligence (AI)-based, and modern/robust theory). In addition to this, a modified proportional-integral derivative (PID) controller, an AI-based neuro-fuzzy controller, and a robust optimal H-infinity controller were designed and evaluated to observe and evaluate the versatility of the novel architecture. Kinematic and dynamic models of the vehicle are briefly introduced. Then, simulated and experimental results were presented and discussed. A Hybrid Electric Vehicle in Low Scale (HELVIS)-Sim simulation environment was employed to the preliminary analysis of the proposed EDS architecture. Later, the EDS itself was embedded in a dSpace 1103 high-performance interface board so that real-time control of the rear wheels of the HELVIS platform was successfully achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitous Computing promises seamless access to a wide range of applications and Internet based services from anywhere, at anytime, and using any device. In this scenario, new challenges for the practice of software development arise: Applications and services must keep a coherent behavior, a proper appearance, and must adapt to a plenty of contextual usage requirements and hardware aspects. Especially, due to its interactive nature, the interface content of Web applications must adapt to a large diversity of devices and contexts. In order to overcome such obstacles, this work introduces an innovative methodology for content adaptation of Web 2.0 interfaces. The basis of our work is to combine static adaption - the implementation of static Web interfaces; and dynamic adaptation - the alteration, during execution time, of static interfaces so as for adapting to different contexts of use. In hybrid fashion, our methodology benefits from the advantages of both adaptation strategies - static and dynamic. In this line, we designed and implemented UbiCon, a framework over which we tested our concepts through a case study and through a development experiment. Our results show that the hybrid methodology over UbiCon leads to broader and more accessible interfaces, and to faster and less costly software development. We believe that the UbiCon hybrid methodology can foster more efficient and accurate interface engineering in the industry and in the academy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the m-machine no-wait flow shop problem where the set-up time of a job is separated from its processing time. The performance measure considered is the total flowtime. A new hybrid metaheuristic Genetic Algorithm-Cluster Search is proposed to solve the scheduling problem. The performance of the proposed method is evaluated and the results are compared with the best method reported in the literature. Experimental tests show superiority of the new method for the test problems set, regarding the solution quality. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.