3 resultados para Electrical coupling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.
Resumo:
The electromagnetic interference between electronic systems or between their components influences the overall performance. It is important thus to model these interferences in order to optimize the position of the components of an electronic system. In this paper, a methodology to construct the equivalent model of magnetic field sources is proposed. It is based on the multipole expansion, and it represents the radiated emission of generic structures in a spherical reference frame. Experimental results for different kinds of sources are presented illustrating our method.
Resumo:
The electromagnetic interference between the electronic systems or their components influences the performance of the systems. For that reason, it is important to model these interferences in order to optimize the position of the systems or their components. In this paper, a method is proposed to construct the equivalent emission source models of systems. The proposed method is based on the multipolar expansion by representing the radiated emission of generic structures in a spherical reference (r, theta, phi). Some results are presented illustrating our method.