9 resultados para Ehrenfest classical quantum theorem
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We derive general rigorous lower bounds for the average ground state energy per site e ((d)) of the quantum and classical Edwards-Anderson spin-glass model in dimensions d=2 and d=3 in the thermodynamic limit. For the classical model they imply that e ((2))a parts per thousand yena'3/2 and e ((3))a parts per thousand yena'2.204a <-.
Resumo:
We review recent progress in the mathematical theory of quantum disordered systems: the Anderson transition, including some joint work with Marchetti, the (quantum and classical) Edwards-Anderson (EA) spin-glass model and return to equilibrium for a class of spin-glass models, which includes the EA model initially in a very large transverse magnetic field. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770066]
Resumo:
A dimensional analysis of the classical equations related to the dynamics of vector-borne infections is presented. It is provided a formal notation to complete the expressions for the Ross' threshold theorem, the Macdonald's basic reproduction "rate" and sporozoite "rate", Garret-Jones' vectorial capacity and Dietz-Molineaux-Thomas' force of infection. The analysis was intended to provide a formal notation that complete the classical equations proposed by these authors.
Resumo:
In this work, we present a supersymmetric extension of the quantum spherical model, both in components and also in the superspace formalisms. We find the solution for short- and long-range interactions through the imaginary time formalism path integral approach. The existence of critical points (classical and quantum) is analyzed and the corresponding critical dimensions are determined.
Resumo:
In the past decades, all of the efforts at quantifying systems complexity with a general tool has usually relied on using Shannon's classical information framework to address the disorder of the system through the Boltzmann-Gibbs-Shannon entropy, or one of its extensions. However, in recent years, there were some attempts to tackle the quantification of algorithmic complexities in quantum systems based on the Kolmogorov algorithmic complexity, obtaining some discrepant results against the classical approach. Therefore, an approach to the complexity measure is proposed here, using the quantum information formalism, taking advantage of the generality of the classical-based complexities, and being capable of expressing these systems' complexity on other framework than its algorithmic counterparts. To do so, the Shiner-Davison-Landsberg (SDL) complexity framework is considered jointly with linear entropy for the density operators representing the analyzed systems formalism along with the tangle for the entanglement measure. The proposed measure is then applied in a family of maximally entangled mixed state.
Resumo:
We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field H-c1 approximate to 2 T in NiCl2-4SC(NH2)(2). A T-3/2 behavior in the specific heat and magnetization is observed at very low temperatures at H = H-c1, which is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at H-c1 shows minor deviations from the expected T-1/2 behavior. Our experimental study is complemented by analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gruneisen parameters, which are ideal quantities to identify QCPs. Both parameters diverge at H-c1 with the expected T-1 power law. By using the Ehrenfest relations at the second-order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.
Resumo:
We analyse the phase diagram of a quantum mean spherical model in terms of the temperature T, a quantum parameter g, and the ratio p = -J(2)/J(1) where J(1) > 0 refers to ferromagnetic interactions between first-neighbour sites along the d directions of a hypercubic lattice, and J(2) < 0 is associated with competing anti ferromagnetic interactions between second neighbours along m <= d directions. We regain a number of known results for the classical version of this model, including the topology of the critical line in the g = 0 space, with a Lifshitz point at p = 1/4, for d > 2, and closed-form expressions for the decay of the pair correlations in one dimension. In the T = 0 phase diagram, there is a critical border, g(c) = g(c) (p) for d >= 2, with a singularity at the Lifshitz point if d < (m + 4)/2. We also establish upper and lower critical dimensions, and analyse the quantum critical behavior in the neighborhood of p = 1/4. 2012 (C) Elsevier B.V. All rights reserved.
Resumo:
We include the dynamics of the angular straggling process in the angular distributions of Mott scattering of heavy ions. We model the passage of an incoming nucleus through a target as a diffusion process. It is then possible to derive a simple and physically transparent expression for the angular dispersion due to the straggling. The angular dispersion should be folded with the theoretical Mott cross section to see its effect on the amplitude of the Mott oscillations. Our results agree very well with data of Pb-208 + Pb-208 scattering. We define the "classical" limit as the limit when the angular dispersion due to straggling becomes comparable with the Mott oscillation period and get the disappearance of quantum interference occurring at the limit 0.050 root xi Z(4)/E-3/2 >= 1, where xi stands for the target thickness, Z is the system's charge, and E is the center-of-mass energy. The experiments on lead are very close to this limit. We show that the kinematical correlations due to the identity of the particles is maintained, as it should be, and the action of the environment is to reduce the fringe visibility.
Resumo:
The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It is shown that the exact quantum calculations lead to results that differ substantially from the predictions of classical theory.