4 resultados para Ecotoxicological
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
During the manufacture of explosives, large amounts of water are used to remove unwanted by-products generated. This water in turn, ends up in wastewater treatment plants or water bodies. The aim of this study was to evaluate the toxic potential of effluent generated by 2.4.6-Trinitrotoluene (TNT) production, yellow water, red water and mixture of yellow and red water, produced from a plant located in the Paraiba Valley, Sao Paolo state, Brazil. Daphnia similis, Danio rerio, Escherichia coli, Pseudomonas putida and Pseudokircheneriella subcaptata were used as test organisms. Physicochemical parameters such as color, pH, conductivity, total dissolved solids, dissolved oxygen, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were evaluated. Effluent from 2.4.6-TNT production was extremely toxic to all test organisms. The physicochemical parameters evaluated showed high levels of conductivity (from 41.533 to 42.344 mu S /cm) and chemical oxygen demand (COD of 8471 to 27.364 mg/L) for the effluents analyzed.
Resumo:
The present study aimed to evaluate the interactions of the pesticide Vertimec (R) 18EC in aquatic ecosystems. In this respect, soil plots were contaminated with Vertimec (R) 18EC at the concentration indicated for strawberry crops (0.125 L of solution m(-2)). After the contamination, torrential rainfall was simulated and the surface runoff was collected and transferred to mesocosm tanks in five treatments, run in triplicate: (1) control-C; (2) runoff from an uncontaminated plot-UR; (3) runoff from the plot contaminated with Vertimec (R) 18EC-CR; (4) direct application of Vertimec (R) 18EC in the water-V and (5) water samples gathered randomly to verify whether there was contamination between the mesocosms-RS. Water samples from these tanks were also submitted to ecotoxicological tests with Daphnia similis and analyses to evaluate the limnological characteristics, in five collection periods over 10 days (240 h). Physical and chemical differences were observed in the water samples, mainly related to increased turbidity, suspended solids and nutrients (nitrogen and phosphate forms). Acute toxicity was observed for the direct application treatment for the entire experimental period, and in some periods for the CR treatment (from 48 h to 168 h). The results obtained suggest that the pesticide did not fully degrade during the study period (10 days) in the direct application treatment, demonstrating that the presence of other substances in the commercial formulation contribute to the maintenance of toxicity. This represents a potential risk for aquatic ecosystems in areas adjacent to where the chemical is applied. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Obtaining ecotoxicological data on pesticides in tropical regions is imperative for performing more realistic risk analysis, and avoidance tests have been proposed as a useful, fast and cost-effective tool. Therefore, the present study aimed to evaluate the avoidance behavior of Eisenia andrei to a formulated product, Vertimec(A (R)) 18 EC (a.i abamectin), in tests performed on a reference tropical artificial soil (TAS), to derive ecotoxicological data on tropical conditions, and a natural soil (NS), simulating crop field conditions. In TAS tests an adaptation of the substrate recommended by OECD and ISO protocols was used, with residues of coconut fiber as a source of organic matter. Concentrations of the pesticide on TAS test ranged from 0 to 7 mg abamectin/kg (dry weight-d.w.). In NS tests, earthworms were exposed to samples of soils sprayed in situ with: 0.9 L of Vertimec(A (R)) 18 EC/ha (RD); twice as much this dosage (2RD); and distilled water (Control), respectively, and to 2RD: control dilutions (12.5, 25, 50, 75%). All tests were performed under 25 +/- A 2A degrees C, to simulate tropical conditions, and a 12hL:12hD photoperiod. The organisms avoided contaminated TAS for an EC50,48h = 3.918 mg/kg soil d.w., LOEC = 1.75 mg/kg soil d.w. and NOEC = 0.85 mg/kg soil d.w. No significant avoidance response occurred for any NS test. Abamectin concentrations in NS were rather lower than EC50, 48h and LOEC determined in TAS tests. The results obtained contribute to overcome a lack of ecotoxicological data on pesticides under tropical conditions, but more tests with different soil invertebrates are needed to improve pesticides risk analysis.
Resumo:
The aim of the present study is to contribute an ecologically relevant assessment of the ecotoxicological effects of pesticide applications in agricultural areas in the tropics, using an integrated approach with information gathered from soil and aquatic compartments. Carbofuran, an insecticide/nematicide used widely on sugarcane crops, was selected as a model substance. To evaluate the toxic effects of pesticide spraying for soil biota, as well as the potential indirect effects on aquatic biota resulting from surface runoff and/or leaching, field and laboratory (using a cost-effective simulator of pesticide applications) trials were performed. Standard ecotoxicological tests were performed with soil (Eisenia andrei, Folsomia candida, and Enchytraeus crypticus) and aquatic (Ceriodaphnia silvestrii) organisms, using serial dilutions of soil, eluate, leachate, and runoff samples. Among soil organisms, sensitivity was found to be E. crypticus < E. andrei < F. candida. Among the aqueous extracts, mortality of C. silvestrii was extreme in runoff samples, whereas eluates were by far the least toxic samples. A generally higher toxicity was found in the bioassays performed with samples from the field trial, indicating the need for improvements in the laboratory simulator. However, the tool developed proved to be valuable in evaluating the toxic effects of pesticide spraying in soils and the potential risks for aquatic compartments. Environ. Toxicol. Chem. 2012;31:437-445. (C) 2011 SETAC