4 resultados para Ecosystem processes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Burrow ventilation of benthic infauna generates water currents that irrigate the interstices of the sediments surrounding the burrow walls. Such activities have associated effects on biogeochemical processes affecting ultimately important ecosystem processes. In this study, the ventilation and irrigation behavior of Marenzelleria viridis, an invasive polychaete species in Europe, was analyzed using different approaches. M. viridis showed to perform two types of ventilation: (1) muscular pumping of water out of the burrow and (2) cilia pumping of water into the burrow. Flowmeter measurements presented muscular pumping in time averaged rates of 0.15 ml min(-1). Oxygen needle electrodes positioned above the burrow openings revealed that muscular undulation of the worm body pumps anoxic water out of the burrow. On the other hand, microscope observations of the animal showed that ventilation of oxygen-rich water in the burrow occurs by ciliary action. The volume of water irrigated by M. viridis appears to vary linearly within the first 24 h incubation, with rates ranging from 0.003 to 0.01 ml min(-1). From those rates we could estimate that the time averaged rate of cilia ventilation should be about 0.16 ml min(-1). Since the cilia pumping into the burrow occurs in periods of 24 +/- 12 min and at 50-70% of the measured time, considerable amounts of water from deeper sediments may percolate upwards to the sediment surface. This water is rich in reduced compounds and nutrients and may have important associated ecological implications in the ecosystem (e.g. affecting redox conditions, organic matter degradation, benthic recruitment and primary production). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings: In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal beta-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal b-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions: Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rainforest of Mexico has been degraded and severely fragmented, and urgently require restoration. However, the practice of restoration has been limited by the lack of species-specific data on survival and growth responses to local environmental variation. This study explores the differential performance of 14 wet tropical early-, mid- or late-successional tree species that were grown in two abandoned pastures with contrasting land-use histories. After 18 months, seedling survival and growth of at least 7 of the 14 tree species studied were significantly higher in the site with a much longer history of land use (site 2). Saplings of the three early-successional species showed exceptional growth rates. However, differences in performance were noted in relation to the differential soil properties between the experimental sites. Mid-successional species generally showed slow growth rates but high seedling survival, whereas late-successional species exhibited poor seedling survival at both the study sites. Stepwise linear regressions revealed that the species integrated response index combining survivorship and growth measurements, was influenced mostly by differences in soil pH between the two abandoned pastures. Our results suggest that local environmental variation among abandoned pastures of contrasting land-use histories influences sapling survival and growth. Furthermore, the similarity of responses among species with the same successional status allowed us to make some preliminary site and species-specific silvicultural recommendations. Future field experiments should extend the number of species and the range of environmental conditions to identify site generalists or more narrowly adapted species, that we would call sensitive.