4 resultados para EXTENSOR INDICIS MUSCLE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of anatomical variations of the musculoskeletal system is important for interpreting unusual clinical presentations. We observed the presence of an abnormal extensor indicis muscle in the left hand of an adult male cadaver. In this case, the muscle comes from the ligament and over the scaphoideum and trapezoideum bones and continues after the short muscle belly; it is attached to the dorsal aponeurosis of the indicis. This muscular disposition was described in other studies which demonstrated approximately 1.0% of incidence. Clinically, this anatomical variation may be associated with pain and swelling at the back of the hand. In these cases symptoms tend to increase due to mechanical stress and can be confused with the presence of a dorsal synovial cyst. This report will help clinicians, surgeons, occupational and physical therapists formulate better clinical or surgical decisions when presented with a rare anatomical variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aimed to investigate the possible role of creatine (CR) supplementation in counteracting dexamethasone-induced muscle wasting and insulin resistance in rats. Also, we examined whether CR intake would modulate molecular pathways involved in muscle remodeling and insulin signaling. Animals were randomly divided into four groups: (1) dexamethasone (DEX); (2) control pair-fed (CON-PF); (3) dexamethasone plus CR (DEX-CR); and (4) CR pair-fed (CR-PF). Dexamethasone (5 mg/kg/day) and CR (5 g/kg/day) were given via drinking water for 7 days. Plantaris and extensor digitorum longus (EDL) muscles were removed for analysis. Plantaris and EDL muscle mass were significantly reduced in the DEX-CR and DEX groups when compared with the CON-PF and CR-PF groups (P < 0.05). Dexamethasone significantly decreased phospho-Ser(473)-Akt protein levels compared to the CON-PF group (P < 0.05) and CR supplementation aggravated this response (P < 0.001). Serum glucose was significantly increased in the DEX group when compared with the CON-PF group (DEX 7.8 +/- A 0.6 vs. CON-PF 5.2 +/- A 0.5 mmol/l; P < 0.05). CR supplementation significantly exacerbated hyperglycemia in the dexamethasone-treated animals (DEX-CR 15.1 +/- A 2.4 mmol/l; P < 0.05 vs. others). Dexamethasone reduced GLUT-4 translocation when compared with the CON-PF and CR-PF (P < 0.05) groups and this response was aggravated by CR supplementation (P < 0.05 vs. others). In conclusion, supplementation with CR resulted in increased insulin resistance and did not attenuate muscle wasting in rats treated with dexamethasone. Given the contrast with the results of human studies that have shown benefits of CR supplementation on muscle atrophy and insulin sensitivity, we suggest caution when extrapolating this animal data to human subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Further clarification is needed with regard to the degree of atrophy in individual muscle groups and its possible relationship to joint torque deficit poststroke. Objective. The purpose of this study was to investigate quadriceps and hamstring muscle volume and strength deficits of the knee extensors and flexors in people with chronic hemiparesis compared with a control group. Design. This was a cross-sectional study. Methods. Thirteen individuals with hemiparesis due to chronic stroke (hemiparetic group) and 13 individuals who were healthy (control group) participated in this study. Motor function, quadriceps and hamstring muscle volume, and maximal concentric and eccentric contractions of the knee extensors and flexors were assessed. Results. Only the quadriceps muscle of the paretic limb showed reduced muscle volume (24%) compared with the contralateral (nonparetic) limb. There were no differences in muscle volume between the hemiparetic and control groups. The peak torque of the paretic-limb knee extensors and flexors was reduced in both contraction modes and velocities compared with the nonparetic limb (36%-67%) and with the control group (49%-75%). The nonparetic limb also showed decreased extensor and flexor peak torque compared with the control group (17%-23%). Power showed similar deficits in strength (12%-78%). There were significant correlations between motor function and strength deficits (.54-.67). Limitations. Magnetic resonance imaging coil length did not allow measurement of the proximal region of the thigh. Conclusions. There were different responses between quadriceps and hamstring muscle volumes in the paretic limb that had quadriceps muscle atrophy only. However, both paretic and nonparetic limbs showed knee extensor and flexor torque and power reduction.