10 resultados para EU-ACP

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balan double dagger o Atmosf,rico Regional de Carbono na Amazonia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm(-3); the highest values were in the southern part of the Basin at altitudes of 1-3 km. The Delta CN/Delta CO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm(-3)) prevailed basinwide, and CO mixing ratios were enhanced by only similar to 10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1A degrees 55' S, 59A degrees 29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 mu m) and coarse mode (2.5 mu m < d < 10.0 mu m) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 mu g m(-3)). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental conditions favor the predominance of dense populations of cyanobacteria in reservoirs in northeastern Brazil. The aim of this study was to understand cyanobacterial population dynamics in the rainy and dry seasons at two depths in the Arcoverde reservoir. Microalgae and cyanobacteria samples were collected during 24 hours with intervals of 4 hours (nycthemeral) at sub-surface and 10 m using a van Dorn bottle and a determined biomass. Physical and chemical variables were obtained and the data were analyzed using the principal component analysis (PCA). No nycthemeral variations in the taxonomic composition or distribution of the populations of cyanobacteria were found between the different times of day in either the rainy or dry season. In both seasons, the greatest biomass of the phytoplankton community was made up of cyanobacteria at two depths and all times of the day. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju was dominant at all times of the day on both the surface and at the bottom. In the rainy season, the differences in cyanobacterial biomass between the surface and bottom were less significant than in the dry season. The differences in cyanobacterial biomass between surface and bottom were less pronounced than those found in the dry season. We concluded that a) physical variables better explain the alterations of species in the phytoplankton community in an environment dominated by cyanobacteria throughout the year; b) seasonal climatic factors associated to periods of stratification and de-stratification are important for alterations in the community and variations in biomass and, c) the turbidity caused by rainfall favored the emergence and establishment of other cyanobacteria, especially Planktothrix agardhii (Gomont) Anagnostidis & Komarek.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodontitis comprises a group of multifactorial diseases in which periodontopathogens accumulate in dental plaque and trigger host chronic inflammatory and immune responses against periodontal structures, which are determinant to the disease outcome. Although unusual cases of non-inflammatory destructive periodontal disease (NIDPD) are described, their pathogenesis remains unknown. A unique NIDPD case was investigated by clinical, microbiological, immunological and genetic tools. The patient, a non-smoking dental surgeon with excessive oral hygiene practice, presented a generalized bone resorption and tooth mobility, but not gingival inflammation or occlusion problems. No hematological, immunological or endocrine alterations were found. No periodontopathogens (A. actinomycetemcomitans, P. gingivalis, F. nucleatum and T. denticola) or viruses (HCMV, EBV-1 and HSV-1) were detected, along with levels of IL-1 beta and TNF-alpha in GCF compatible with healthy tissues. Conversely ALP, ACP and RANKL GCF levels were similar to diseased periodontal sites. Genetic investigation demonstrated that the patient carried some SNPs, as well HLA-DR4 (*0404) and HLA-B27 alleles, considered risk factors for bone loss. Then, a less vigorous and diminished frequency of toothbrushing was recommended to the patient, resulting in the arrest of alveolar bone loss, associated with the return of ALP, ACP and RANKL in GCF to normality levels. In conclusion, the unusual case presented here is compatible with the previous description of NIDPD, and the results that a possible combination of excessive force and frequency of mechanical stimulation with a potentially bone loss prone genotype could result in the alveolar bone loss seen in NIDPD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This in vitro study evaluated the preventive potential of experimental pastes containing 10% and 20% hydroxyapatite nanoparticles (Nano-HAP), with or without fluoride, on dental demineralization. Bovine enamel (n=15) and root dentin (n=15) specimens were divided into 9 groups according to their surface hardness: control (without treatment), 20 Nanop paste (20% HAP), 20 Nanop paste plus (20% HAP + 0.2% NaF), 10 Nanop paste (10% HAP), 10 Nanop paste plus (10% HAP + 0.2% NaF), placebo paste (without fluoride and HAP), fluoride paste (0.2% NaF), MI paste (CPP-ACP, casein phosphopeptide-amorphous calcium phosphate), and MI paste plus (CPP-ACP + 0.2% NaF). Both MI pastes were included as commercial control products containing calcium phosphate. The specimens were treated with the pastes twice a day (1 min), before and after demineralization. The specimens were subjected to a pH-cycling model (demineralization–6-8 h/ remineralization-16-18 h a day) for 7 days. The dental subsurface demineralization was analyzed using cross-sectional hardness (kgf/mm 2 , depth 10-220 µm). Data were tested using repeated-measures two-way ANOVA and Bonferroni's test (p<0.05). The only treatment able to reduce the loss of enamel and dentin subsurface hardness was fluoride paste (0.2% NaF), which differed significantly from the control at 30- and 50-µm depth (p<0.0001). The other treatments were not different from each other or compared with the control. The experimental Nanop pastes, regardless of the addition of fluoride, were unable to reduce dental demineralization in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. Results This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. Conclusions This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The viability and interpretation of techniques for the evaluation of immunocompetence of animals in their natural environment has been largely debated. One of these methods is based on testing the antimicrobial capacity of the blood and/or plasma in vitro, which could rapidly and effectively assess the immunological conditions of natural populations. We tested the applicability of the antimicrobial capacity of plasma (ACP) assay in anuran amphibians from the Atlantic Forest. The assay was performed by measuring both the turbidity (in a spectrophotometer) and the colony forming units (CFU) of the remaining bacteria (Escherichia coli) following exposure to amphibian plasma. Although both assays were correlated, the ACP assay by spectrophotometry showed 10 times lower intra-assay variation. We also found interspecific variation in ACP, as well as the maintenance of ACP values in males from the same population, collected in different breeding seasons. Thus, the estimation of ACP by spectrophotometry provides a convenient and accurate method for evaluating innate immunocompetence in comparative and ecophysiological studies of anuran amphibians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as −4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > −10 °C and the specific conditions under which they can influence cloud glaciation need to be further evaluated so as to understand how evolutionary processes could have positively selected for INA.