9 resultados para ESTERIFICATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The kinetics of the homogeneous acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in LiCl/N,N-dimethylacetamide have been studied by conductivity measurements from 65 to 85 A degrees C. We have employed cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups have been employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k((Prim-OH))/k((Sec-OH)) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall, and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic-anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.
Resumo:
Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.
Resumo:
The kinetic resolution of chiral beta-borylated carboxylic esters via lipase-catalyzed hydrolysis and transesterification reactions was studied. The enantioselective hydrolysis catalyzed by CAL-B furnished the beta-borylated carboxylic acid with reasonable enantiomeric excess (62% ee), while both methyl and ethyl beta-borylated carboxylic esters were recovered with excellent ee (>99%). Meanwhile, the transesterification reaction of beta-borylated carboxylic esters and several alcohols, catalyzed by CAL-B, only indicated a high selectivity when ethanol and methyl-(beta-pinacolylboronate)-butanoate were used as substrates, which gave ethyl-(beta-pinacolylboronate)-butanoate with >99% ee. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (approximate to 90 mmol L-1). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex (R) 100L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work describes the ultrasound-assisted synthesis of saturated aliphatic esters from synthetic aliphatic acids and either methanol or ethanol. The products were isolated in good yields after short reaction times under mild conditions. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Background: The aim was to investigate new markers for type 2 diabetes (T2DM) dyslipidemia related with LDL and HDL metabolism. Removal from plasma of free and esterified cholesterol transported in LDL and the transfer of lipids to HDL are important aspects of the lipoprotein intravascular metabolism. The plasma kinetics (fractional clearance rate, FCR) and transfers of lipids to HDL were explored in T2DM patients and controls, using as tool a nanoemulsion that mimics LDL lipid structure (LDE). Results: C-14- cholesteryl ester FCR of the nanoemulsion was greater in T2DM than in controls (0.07 +/- 0.02 vs. 0.05 +/- 0.01 h(-1), p = 0.02) indicating that LDE was removed faster, but FCR H-3- cholesterol was equal in both groups. Esterification rates of LDE free-cholesterol were equal. Cholesteryl ester and triglyceride transfer from LDE to HDL was greater in T2DM (4.2 +/- 0.8 vs. 3.5 +/- 0.7%, p = 0.03 and 6.8 +/- 1.6% vs. 5.0 +/- 1.1, p = 0.03, respectively). Phospholipid and free cholesterol transfers were not different. Conclusions: The kinetics of free and esterified cholesterol tended to be independent in T2DM patients and the lipid transfers to HDL were also disturbed. These novel findings may be related with pathophysiological mechanisms of diabetic macrovascular disease.
Resumo:
A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.
Resumo:
Background Type 1 diabetes (T1DM) is frequently accompanied by dyslipidemia related with insulin-dependent steps of the intravascular lipoprotein metabolism. T1DM dyslipidemia may predispose to precocious cardiovascular disease and the lipid status in T1DM under intensive insulin treatment has not been sufficiently explored. The aim was to investigate the plasma lipids and the metabolism of LDL and HDL in insulin-treated T1DM patients with high glycemic levels. Methods Sixteen male patients with T1DM (26 ± 7 yrs) with glycated hemoglobin >7%, and 15 control subjects (28 ± 6 yrs) were injected with a lipid nanoemulsion (LDE) resembling LDL and labeled with 14C-cholesteryl ester and 3H-free-cholesterol for determination of fractional clearance rates (FCR, in h-1) and cholesterol esterification kinetics. Transfer of labeled lipids from LDE to HDL was assayed in vitro. Results LDL-cholesterol (83 ± 15 vs 100 ± 29 mg/dl, p=0.08) tended to be lower in T1DM than in controls; HDL-cholesterol and triglycerides were equal. LDE marker 14C-cholesteryl ester was removed faster from plasma in T1DM patients than in controls (FCR=0.059 ± 0.022 vs 0.039 ± 0.022h-1, p=0.019), which may account for their lower LDL-cholesterol levels. Cholesterol esterification kinetics and transfer of non-esterified and esterified cholesterol, phospholipids and triglycerides from LDE to HDL were also equal. Conclusion T1DM patients under intensive insulin treatment but with poor glycemic control had lower LDL-cholesterol with higher LDE plasma clearance, indicating that LDL plasma removal was even more efficient than in controls. Furthermore, HDL-cholesterol and triglycerides, cholesterol esterification and transfer of lipids to HDL, an important step in reverse cholesterol transport, were all normal. Coexistence of high glycemia levels with normal intravascular lipid metabolism may be related to differences in exogenous insulin bioavailabity and different insulin mechanisms of action on glucose and lipids. Those findings may have important implications for prevention of macrovascular disease by intensive insulin treatment.
Resumo:
The lipase produced by a newly isolate Sporidiobolus pararoseus strain has potential catalysis ability for esterification reactions. In order to improve its synthetic activity, this work aimed at optimizing 'synthetic lipase' production by submerged fermentation of a conventional media based on peptone, yeast extract, NaCl and olive oil using experimental design technique. According to the results obtained in the first experimental design (2(4-1)), yeast extract and NaCl concentrations were tested to further optimization by response surface methodology. The maximum 'synthetic lipase' activity obtained was 26.9 U/mL in the optimized media (5.0, 6.8, 7.0 and 1.0% (wt/v) of peptone, yeast extract, NaCl and olive oil, respectively), representing a 6.36-fold increase compared to the initial medium. The time course of 'synthetic lipase' production in the optimized condition was evaluated in terms of synthetic activity, protease activity, biomass and total carbon and the maximum synthetic activity was observed during the stationary phase of growth.