30 resultados para ENZYME STABILIZATION

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Supercritical carbon dioxide is a promising green-chemistry solvent for many enzyme-catalyzed chemical reactions, yet the striking stability of some enzymes in such unconventional environments is not well understood. Here, we investigate the stabilization of the Candida antarctica Lipase B (CALB) in supercritical carbon dioxide-water biphasic systems using molecular dynamics simulations. The preservation of the enzyme structure and optimal activity depend on the presence of small amounts of water in the supercritical dispersing medium. When the protein is at least partially hydrated, water molecules bind to specific sites on the enzyme surface and prevent carbon dioxide from penetrating its catalytic core. Strikingly, water and supercritical carbon dioxide cover the protein surface quite heterogeneously. In the first solvation layer, the hydrophilic residues at the surface of the protein are able to pin down patches of water, whereas carbon dioxide solvates preferentially hydrophobic surface residues. In the outer solvation shells, water molecules tend to cluster predominantly on top of the larger water patches of the first solvation layer instead of spreading evenly around the remainder of the protein surface. For CALB, this exposes the substrate-binding region of the enzyme to carbon dioxide, possibly facilitating diffusion of nonpolar substrates into the catalytic funnel. Therefore, by means of microheterogeneous solvation, enhanced accessibility of hydrophobic substrates to the active site can be achieved, while preserving the functional structure of the enzyme. Our results provide a molecular picture on the nature of the stability of proteins in nonaqueous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine plasma homocysteine levels during fasting and after methionine overload, and to correlate homocysteinemia according to methylenetetrahydrofolate reductase (MTHFR) polymorphism in type 2 diabetic adults. Subjects and methods: The study included 50 type 2 diabetic adults (DM group) and 52 healthy subjects (Control group). Anthropometric data, and information on food intake, serum levels of vitamin B 12, folic acid and plasma homocysteine were obtained. The identification of C677T and A1298C polymorphisms was carried out in the MTHFR gene. Results: There was no significant difference in homocysteinemia between the two groups, and hyperhomocysteinemia during fasting occurred in 40% of the diabetic patients and in 23% of the controls. For the same polymorphism, there was not any significant difference in homocysteine between the groups. In the Control group, homocysteinemia was greater in those subjects with C677T and A1298C polymorphisms. Among diabetic subjects, those with the A1298C polymorphism had lower levels of homocysteine compared with individuals with C677T polymorphism. Conclusion: The MTHFR polymorphism (C677T and A1298C) resulted in different outcomes regarding homocysteinemia among individuals of each group (diabetic and control). These data suggest that metabolic factors inherent to diabetes influence homocysteine metabolism. Arq Bras Endocrinol Metab. 2012;56(7):429-34

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared acid-base and biochemical changes and quality of recovery in male cats with experimentally induced urethral obstruction and anesthetized with either propofol or a combination of ketamine and diazepam for urethral catheterization. Ten male cats with urethral obstruction were enrolled for urethral catheterization and anesthetized with either ketamine-diazepam (KD) or propofol (P). Lactated Ringer's solution was administered by intravenous (IV) beginning 15 min before and continuing for 48 h after relief of urethral obstruction. Quality of recovery and time to standing were evaluated. The urethral catheter was maintained to measure urinary output. Hematocrit (Hct), total plasma protein (TPP), albumin, total protein (TP), blood urea nitrogen (BUN), creatinine, pH, bicarbonate (HCO3-), chloride, base excess, anion gap, sodium, potassium, and partial pressure of carbon dioxide in mixed venous blood (pvCO(2)) were measured before urethral obstruction, at start of fluid therapy (0 h), and at subsequent intervals. The quality of recovery and time to standing were respectively 4 and 75 min in the KD group and 5 and 16 min in the P group. The blood urea nitrogen values were increased at 0, 2, and 8 h in both groups. Serum creatinine increased at 0 and 2 h in cats administered KD and at 0, 2, and 8 h in cats receiving P, although the values were above the reference range in both groups until 8 h. Acidosis occurred for up to 2 h in both groups. Acid-base and biochemical stabilization were similar in cats anesthetized with propofol or with ketamine-diazepam. Cats that received propofol recovered much faster, but the ketamine-diazepam combination was shown to be more advantageous when treating uncooperative cats as it can be administered by intramuscular (IM) injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to compare the performance of three serological tests for diagnosis of Brucella abortus infections in buffaloes (Bubalus bubalis). Serum samples collected from 696 adult females were submitted to the competitive enzyme-linked immunosorbent assay (ELISAC), (I-ELISA), fluorescence polarization test (FPA), 2-mercaptoethanol test (2-ME) and complement fixation test (CFT). The gold standard was the combination of CFT and 2-ME, considering as positive the reactors in both CFT and 2-ME, and as negative those non-reactors. ROC analyses were done for C-ELISA, I-ELISA and FPA and the Kappa agreement index were also calculated. The best combinations of relative sensitivity (SEr) and relative specificity (SPr) and Kappa were given by C-ELISA (96.9%, 99.1%, and 0.932, respectively) and FPA (92.2%, 97.6 and 0.836, respectively). The C-ELISA and FPA were the most promising confirmatory tests for the serological diagnosis of brucellosis in buffaloes, and for these tests, cut-off values for buffaloes may be the same as those used for bovines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feedback stabilization of an ensemble of non interacting half spins described by the Bloch equations is considered. This system may be seen as an interesting example for infinite dimensional systems with continuous spectra. We propose an explicit feedback law that stabilizes asymptotically the system around a uniform state of spin +1/2 or -1/2. The proof of the convergence is done locally around the equilibrium in the H-1 topology. This local convergence is shown to be a weak asymptotic convergence for the H-1 topology and thus a strong convergence for the C topology. The proof relies on an adaptation of the LaSalle invariance principle to infinite dimensional systems. Numerical simulations illustrate the efficiency of these feedback laws, even for initial conditions far from the equilibrium. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preserving the enzyme structure in solid films is key for producing various bioelectronic devices, including biosensors, which has normally been performed with nanostructured films that allow for control of molecular architectures. In this paper, we investigate the adsorption of uricase onto Langmuir monolayers of stearic acid (SA), and their transfer to solid supports as Langmuir Blodgett (LB) films. Structuring of the enzyme in beta-sheets was preserved in the form of 1-layer LB film, which was corroborated with a higher catalytic activity than for other uricase-containing LB film architectures where the beta-sheets structuring was not preserved. The optimized architecture was also used to detect uric acid within a range covering typical concentrations in the human blood. The approach presented here not only allows for an optimized catalytic activity toward uric acid but also permits one to explain why some film architectures exhibit a superior performance. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the room temperature ionic liquid (1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BMMI][BF4])) on the immobilization of glucose oxidase (GOx) was studied. The electrochemical performance of biosensors prepared following different protocols indicated a beneficial effect of the ionic liquid on the analytical parameters. The chemical interaction between GOx, [BMMI][BF4] and glutaraldehyde was investigated using UV-visible spectroscopy (UV-vis) and circular dichroism (CD). Structural changes of the biomolecule were observed to depend on the method used for the immobilization. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thimet oligopeptidase (EP24.15) is a cysteine-rich metallopeptidase containing fifteen Cys residues and no intra-protein disulfide bonds. Previous work on this enzyme revealed that the oxidative oligomerization of EP24.15 is triggered by S-glutathiolation at physiological GSSG levels (10-50 mu M) via a mechanism based on thiol-disulfide exchange. In the present work, our aim was to identify EP24.15 Cys residues that are prone to S-glutathiolation and to determine which structural features in the cysteinyl bulk are responsible for the formation of mixed disulfides through the reaction with GSSG and, in this particular case, the Cys residues within EP24.15 that favor either S-glutathiolation or inter-protein thiol-disulfide exchange. These studies were conducted by in silico structural analyses and simulations as well as site-specific mutation. S-glutathiolation was determined by mass spectrometric analyses and western blotting with anti-glutathione antibody. The results indicated that the stabilization of a thiolate sulfhydryl and the solvent accessibility of the cysteines are necessary for S-thiolation. The Solvent Access Surface analysis of the Cys residues prone to glutathione modification showed that the S-glutathiolated Cys residues are located inside pockets where the sulfur atom comes into contact with the solvent and that the positively charged amino acids are directed toward these Cys residues. The simulation of a covalent glutathione docking onto the same Cys residues allowed for perfect glutathione posing. A mutation of the Arg residue 263 that forms a saline bridge to the Cys residue 175 significantly decreased the overall S-glutathiolation and oligomerization of EP24.15. The present results show for the first time the structural requirements for protein S-glutathiolation by GSSG and are consistent with our previous hypothesis that EP24.15 oligomerization is dependent on the electron transfer from specific protonated Cys residues of one molecule to previously S-glutathionylated Cys residues of another one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites obtained from the polymerization of aniline in the presence of nanoparticles of magnetite (Fe3O4) have been investigated in previous studies. However, there is a lack of information available on the redox interaction of the nanoparticle/conductive polymer couple and the stability that such an oxide can give to the organic phase. In this work, Fe3O4 nanoparticles were incorporated into a PANi matrix by the in-situ oxidative polymerization method. A combination of X-ray diffraction, Mossbauer spectroscopy, transmission electronic microscopy, UV-visible spectroscopy as well as the cyclic voltammetric and Raman spectroscopy techniques, was used to understand the redox effect that the partially oxidized nanoparticles produced on the polymer. It was found that magnetite greatly stabilised PANi, mainly by enhancing the Leucoemeraldine/Emeraldine redox couple and also by reducing the bipolaronic state. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gene encoding a-L-arabinofuranosidase (abfA) from Aspergillus niveus was identified, cloned, and successfully expressed in Aspergillus nidulans. Based on amino acid sequence comparison, the 88.6 kDa enzyme could be assigned to the GH family 51. The characterization of the purified recombinant AbfA revealed that the enzyme was active at a limited pH range (pH 4.0-5.0) and an optimum temperature of 70 degrees C. The AbfA was able to hydrolyze arabinoxylan, xylan from birchwood, debranched arabinan, and 4-nitrophenyl arabinofuranoside. Synergistic reactions using both AbfA and endoxylanase were also assessed. The highest degree of synergy was obtained after the sequential treatment of the substrate with endoxylanase, followed by AbfA, which was observed to release noticeably more reducing sugars than that of either enzyme acting individually. The immobilization of AbfA was performed via ionic adsorption onto various supports: agarose activated by polyethyleneimine polymers, cyanogen bromide activated Sepharose, DEAE-Sepharose, and Sepharose-Q The Sepharose-Q derivative remained fully active at pH 5 after 360 min at 60 degrees C, whereas the free AbfA was inactivated after 60 min. A synergistic effect of arabinoxylan hydrolysis by AbfA immobilized in Sepharose-Q and endoxylanase immobilized in glyoxyl agarose was also observed. The stabilization of arabinofuranosidases using immobilization tools is a novel and interesting topic. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BALDON, R. D. M., D. F. M. LOBATO, L. P. CARVALHO, P. Y. L. WUN, P. R. P. SANTIAGO, and F. V. SERRAO. Effect of Functional Stabilization Training on Lower Limb Biomechanics in Women. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 135-145, 2012. Purpose: This study aimed to verify the effects of functional stabilization training on lower limb kinematics, functional performance, and eccentric hip and knee torques. Methods: Twenty-eight women were divided into a training group (TG; n = 14), which carried out the functional stabilization training during 8 wk, and a control group (CG; n = 14), which carried out no physical training. The kinematic assessment of the lower limb was performed during a single-leg squat, and the functional performance was evaluated by way of the single-leg triple hop and the timed 6-m single-leg hop tests. The eccentric hip abductor, adductor, lateral rotator, medial rotator, and the knee flexor and extensor torques were measured using an isokinetic dynamometer. Results: After 8 wk, the TG significantly reduced the values for knee abduction (from -6.86 degrees to 1.49 degrees), pelvis depression (from -10.21 degrees to -7.86 degrees) and femur adduction (from 7.08 degrees to 5.19 degrees) as well as increasing the excursion of femur lateral rotation (from -0.55 degrees to -3.67 degrees). Similarly, the TG significantly increased the values of single-leg triple hop (from 3.52 to 3.92 m) and significantly decreased the values of timed 6-m single-leg hop tests (from 2.43 to 2.14 s). Finally, the TG significantly increased the eccentric hip abductor (from 1.31 to 1.45 N center dot m center dot kg(-1)), hip lateral rotator (from 0.75 to 0.91 N center dot m center dot kg(-1)), hip medial rotator (from 1.45 to 1.66 N center dot m center dot kg(-1)), knee flexor (from 1.43 to 1.55 N center dot m center dot kg(-1)), and knee extensor (from 3.46 to 4.40 N center dot m center dot kg(-1)) torques. Conclusions: Strengthening of the hip abductor and lateral rotator muscles associated with functional training improves dynamic lower limb alignment and increases the strength and functional performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein folding, refolding and degradation are essential for cellular life and are regulated by protein homeostatic processes such those that involve the molecular chaperone DnaK/Hsp70 and its co-chaperone DnaJ. Hsp70 action is initiated when proteins from the DnaJ family bind an unfolded protein for delivery purposes. In eukaryotes, the DnaJ family can be divided into two main groups, Type I and Type II, represented by yeast cytosolic Ydj1 and Sis1, respectively. Although sharing some unique features both members of the DnaJ family, Ydj1 and Sis1 are structurally and functionally distinct as deemed by previous studies, including the observation that their central domains carry the structural and functional information even in switched chimeras. In this study, we combined several biophysical tools for evaluating the stability of Sis1 and mutants that had the central domains (named Gly/Met rich domain and C-terminal Domain I) deleted or switched to those of Ydj1 to gain insight into the role of these regions in the structure and function of Sis1. The mutants retained some functions similar to full length wild-type Sis1, however they were defective in others. We found that: 1) Sis1 unfolds in at least two steps as follows: folded dimer to partially folded monomer and then to an unfolded monomer. 2) The Gly/Met rich domain had intrinsically disordered characteristics and its deletion had no effect on the conformational stability of the protein. 3) The deletion of the C-terminal Domain I perturbed the stability of the dimer. 4) Exchanging the central domains perturbed the conformational stability of the protein. Altogether, our results suggest the existence of two similar subdomains in the C-terminal domain of DnaJ that could be important for stabilizing each other in order to maintain a folded substrate-binding site as well as the dimeric state of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An endo-1,5-arabinanase (abnA) encoding gene from Aspergillus niveus was identified, cloned and successfully expressed in Aspergillus nidulans strain A773. Based on amino acid sequence comparison, the 34-kDa enzyme could be assigned to CAZy GH family 43. Characterization of purified recombinant endo-1,5-arabinanase (AbnA) revealed that it is active at a wide pH range (pH 4.0-7.0) and an optimum temperature at 70 degrees C. The immobilization of the AbnA was performed via covalent binding onto agarose-modified supports: glyoxyl iminodiacetic acid-Ni2+, glyoxyl amine, glyoxyl (4% and 10%) and cyanogen bromide activated sepharose. The yield of immobilization was similar on glyoxyl amine and glyoxyl (96%), and higher than glyoxyl iminodiacetic acid-Ni2+ (43%) support. The thermal inactivation of these immobilized preparations showed that the stability of the AbnA immobilized on glyoxyl 4 and 10% was improved by 4.0 and 10.3-fold factor at 70 degrees C. The half-life of glyoxyl 4% derivative at 60 degrees C was >48 h (pH 5), 9 h (pH 7) and 88 min (pH 9). The major hydrolysis product of debranched arabinan or arabinopentaose by glyoxyl agarose-immobilized AbnA was arabinobiose. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. (C) 2012 Elsevier Ltd. All rights reserved.