5 resultados para ENVIRONMENTAL SALINITY

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation attempts to determine which environmental parameters of the bottom water and sediment control recent foraminifera fauna at Ezcurra Inlet (King George Island, Antarctica), using data collected during four summers (2002/03, 2003/04, 2004/05 and 2006/07). The study revealed that Ezcurra Inlet contain typical Antarctic foraminifera fauna with three distinct assemblages and few differences in environmental parameters. The species Bolivina pseudopunctata, Fursenkoina fusiformis, Portatrochammina antarctica, and Adercotryma glomerata were abundant in the samples. An elevated abundance, richness and diversity were common at the entrance of the inlet at depths greater than 55 m, where the inlet was characterized by low temperatures and muddy sand. In the inner part of the inlet (depth 30-55 m), richness and diversity were low and the most significant species were Cassidulinoides parkerianus, C. porrectus, and Psammosphaera fusca. Shallow waters showed low values of richness and abundance and high temperatures coupled with coarser sediment. In areas with high suspended matter concentrations and pH values associated with low salinity the most representative species were Hippocrepinella hirudinea and Hemisphaerammina bradyi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temporal and spatial variation of Paralonchurus brasiliensis density (fish per m(2)) in relation to environmental factors was studied on the coasts of Ubatuba and Caraguatatuba, south-eastern Brazil. The fish were collected by shrimp fishery trawl on a monthly basis from January to December, 2002. Seven depths were previously established and for each one the temperature, salinity, organic matter content and grain size of the sediment (phi) was measured. The seasonal analysis of temperature and salinity indicated the presence of the water masses South Atlantic Central Water (SACW) and Coastal Waters (CW) acting in the study area. A total of 29,808 fish were collected during the study period. The highest densities were registered during the summer and autumn indicating an association with CW. The fish population moved to shallow depths during the intrusion of the cold water mass, SACW. The highest densities were registered in depths where the sediment composition ranged from fine sand to silt-clay. Thus, the temperature and type of the sediment are the main environmental factors which affect the spatial-temporal variation of P. brasiliensis density in south-eastern Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sciaenids have among the highest species richness, numerical abundance and biomass of any family of fishes along the Brazilian coast. The aim of this study was to analyze the composition and spatial and temporal distribution of as well as the influence of temperature, salinity and depth on the sciaenid assemblage of Santos Bay. A total of 29,306 individuals belonging to 13 genera and 21 species were captured, between November 2004 and December 2005, with Stellifer rastrifer representing 70.4% of the total composition. Highest abundance and biomass occurred on the east side of the bay, and the highest species richness occurred near the mouth of the Santos Channel, which was also the site with least similarity to the other sites. Highest abundances occurred in April 2005 and lowest in September 2005. Key environmental factors influencing distribution of sciaenids were depth and temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sciaenids have among the highest species richness, numerical abundance and biomass of any family of fishes along the Brazilian coast. The aim of this study was to analyze the composition and spatial and temporal distribution of as well as the influence of temperature, salinity and depth on the sciaenid assemblage of Santos Bay. A total of 29,306 individuals belonging to 13 genera and 21 species were captured, between November 2004 and December 2005, with Stellifer rastrifer representing 70.4% of the total composition. Highest abundance and biomass occurred on the east side of the bay, and the highest species richness occurred near the mouth of the Santos Channel, which was also the site with least similarity to the other sites. Highest abundances occurred in April 2005 and lowest in September 2005. Key environmental factors influencing distribution of sciaenids were depth and temperature.