2 resultados para EMBEDDED MINIMAL-SURFACES

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental implants have increased the use of titanium and titanium alloys in prosthetic applications. Whitening toothpastes with peroxides are available for patients with high aesthetic requirements, but the effect of whitening toothpastes on titanium surfaces is not yet known, although titanium is prone to fluoride ion attack. Thus, the aim of the present study was to compare Ti-5Ta alloy to cp Ti after toothbrushing with whitening and conventional toothpastes. Ti-5Ta (%wt) alloy was melted in an arc melting furnace and compared with cp Ti. Disks and toothbrush heads were embedded in PVC rings to be mounted onto a toothbrushing test apparatus. A total of 260,000 cycles were carried out at 250 cycles/minute under a load of 5 N on samples immersed in toothpaste slurries. Surface roughness and Vickers microhardness were evaluated before and after toothbrushing. One sample of each material/toothpaste was analyzed by Scanning Electron Microscopy (SEM) and compared with a sample that had not been submitted to toothbrushing. Surface roughness increased significantly after toothbrushing, but no differences were noted after toothbrushing with different toothpastes. Toothbrushing did not significantly affect sample microhardness. The results suggest that toothpastes that contain and those that do not contain peroxides in their composition have different effects on cp Ti and Ti-5Ta surfaces. Although no significant difference was noted in the microhardness and roughness of the surfaces brushed with different toothpastes, both toothpastes increased roughness after toothbrushing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50) fragments of bovine enamel (15 mm × 5 mm) were randomly assigned to five groups (n=10) according to the product utilized: G1 (control)= silicone polisher (TDV), G2= 37% phosphoric acid (3M/ESPE) + pumice stone (SS White), G3= Micropol (DMC Equipment), G4= Opalustre (Ultradent) and G5= Whiteness RM (FGM Dental Products). Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p?0.05) which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p?0.05). Results: Means and standard deviations of roughness and wear (µm) after all the promoted stages were: G1=7.26(1.81)/13.16(2.67), G2=2.02(0.62)/37.44(3.33), G3=1.81(0.91)/34.93(6.92), G4=1.92(0.29)/38.42(0.65) and G5=1.98(0.53)/33.45(2.66). At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.