7 resultados para ELECTRONIC MEASUREMENT

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The free-carrier absorption cross-section sigma of a magnetic colloid composed of magnetite nanoparticles dispersed in oil is obtained by using the Z-scan technique in different experimental conditions of the laser beam. We show that it is possible to obtain sigma with picosecond pulsed and millisecond chopped beams with pulse frequencies smaller than about 30 Hz. For higher pulse frequencies, the heating of the colloidal system triggers the appearance of the Soret effect. This effect artificially increases the value of sigma calculated from the experimental results. The limits of the different experimental setups are discussed. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the zinc oxide surge arresters (ZnO) are widely used in power systems, however, a large number of silicon carbide surge arresters (SiC) are still in service in the utilities. On the other hand, it is not possible to replace all SiC surge arresters in a short time period, being necessary to review the maintenance program taking into account the surge arresters that are more degraded. In this context, a research project was established between the University of Sao Paulo and the electrical utility CTEEP, aiming the investigation of its SiC surge arresters. This work shows that the leakage current measurement, a diagnostic method for the ZnO surge arresters, can provide useful information related to the condition of the SiC surge arresters. Analysis of the amplitude and distortion of the leakage current, also considering thermovision measurements, resulted in better evaluation of the SiC surge arresters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This new and general method here called overflow current switching allows a fast, continuous, and smooth transition between scales in wide-range current measurement systems, like electrometers. This is achieved, using a hydraulic analogy, by diverting only the overflow current, such that no slow element is forced to change its state during the switching. As a result, this approach practically eliminates the long dead time in low-current (picoamperes) switching. Similar to a logarithmic scale, a composition of n adjacent linear scales, like a segmented ruler, measures the current. The use of a linear wide-range system based on this technique assures fast and continuous measurement in the entire range, without blind regions during transitions and still holding suitable accuracy for many applications. A full mathematical development of the method is given. Several computer realistic simulations demonstrated the viability of the technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to assess, in vivo, the accuracy of the NovApex (R) electronic foramen locator in determining working length (WL) in vital and necrotic posterior teeth. The NovApex (R) was used in 144 canals: 35 teeth with vital pulps (68 canals) and 42 teeth with necrotic pulps (76 canals). WL was measured with the NovApex (R) locator and confirmed using the radiographic method. Differences between electronic and radiographic measurements ranging between 0.0 and 0.4 millimeters were classified as acceptable; differences equal to or greater than 0.5 millimeter were considered unacceptable. Pearson's chi-square test was used to assess the influence of pulp condition on the accuracy of NovApex (R) (alpha = 0.05). Regardless of pulp condition, differences between electronic and radiographic WL measurements were acceptable in 73.61% of the canals. No statistically significant differences in accuracy were observed when comparing vital and necrotic canals (p > 0.05). There were 38 unacceptable measurements. In none of these cases was the file tip located beyond the radiographic apex; in 32, it was located short of the NovApex (R) measurement. Pulp condition had no significant effect on the accuracy of NovApex (R).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determination of the utility harmonic impedance based on measurements is a significant task for utility power-quality improvement and management. Compared to those well-established, accurate invasive methods, the noninvasive methods are more desirable since they work with natural variations of the loads connected to the point of common coupling (PCC), so that no intentional disturbance is needed. However, the accuracy of these methods has to be improved. In this context, this paper first points out that the critical problem of the noninvasive methods is how to select the measurements that can be used with confidence for utility harmonic impedance calculation. Then, this paper presents a new measurement technique which is based on the complex data-based least-square regression, combined with two techniques of data selection. Simulation and field test results show that the proposed noninvasive method is practical and robust so that it can be used with confidence to determine the utility harmonic impedances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate, ex vivo, the precision of five electronic root canal length measurement devices (ERCLMDs) with different operating systems: the Root ZX, Mini Apex Locator, Propex II, iPex, and RomiApex A-15, and the possible influence of the positioning of the instrument tips short of the apical foramen. Material and Methods: Forty-two mandibular bicuspids had their real canal lengths (RL) previously determined. Electronic measurements were performed 1.0 mm short of the apical foramen (-1.0), followed by measurements at the apical foramen (0.0). The data resulting from the comparison of the ERCLMD measurements and the RL were evaluated by the Wilcoxon and Friedman tests at a significance level of 5%. Results: Considering the measurements performed at 0.0 and -1.0, the precision rates for the ERCLMDs were: 73.5% and 47.1% (Root ZX), 73.5% and 55.9% (Mini Apex Locator), 67.6% and 41.1% (Propex II), 61.7% and 44.1% (iPex), and 79.4% and 44.1% (RomiApex A-15), respectively, considering ±0.5 mm of tolerance. Regarding the mean discrepancies, no differences were observed at 0.0; however, in the measurements at -1.0, the iPex, a multi-frequency ERCLMD, had significantly more discrepant readings short of the apical foramen than the other devices, except for the Propex II, which had intermediate results. When the ERCLMDs measurements at -1.0 were compared with those at 0.0, the Propex II, iPex and RomiApex A-15 presented significantly higher discrepancies in their readings. Conclusions: Under the conditions of the present study, all the ERCLMDs provided acceptable measurements at the 0.0 position. However, at the -1.0 position, the ERCLMDs had a lower precision, with statistically significant differences for the Propex II, iPex, and RomiApex A-15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent advances and promises in nanoscience and nanotechnology have been focused on hexagonal materials, mainly on carbon-based nanostructures. Recently, new candidates have been raised, where the greatest efforts are devoted to a new hexagonal and buckled material made of silicon, named Silicene. This new material presents an energy gap due to spin-orbit interaction of approximately 1.5 meV, where the measurement of quantum spin Hall effect(QSHE) can be made experimentally. Some investigations also show that the QSHE in 2D low-buckled hexagonal structures of germanium is present. Since the similarities, and at the same time the differences, between Si and Ge, over the years, have motivated a lot of investigations in these materials. In this work we performed systematic investigations on the electronic structure and band topology in both ordered and disordered SixGe1-x alloys monolayer with 2D honeycomb geometry by first-principles calculations. We show that an applied electric field can tune the gap size for both alloys. However, as a function of electric field, the disordered alloy presents a W-shaped behavior, similarly to the pure Si or Ge, whereas for the ordered alloy a V-shaped behavior is observed.