15 resultados para EEG SIGNALS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.
Resumo:
Abstract Background Despite new brain imaging techniques that have improved the study of the underlying processes of human decision-making, to the best of our knowledge, there have been very few studies that have attempted to investigate brain activity during medical diagnostic processing. We investigated brain electroencephalography (EEG) activity associated with diagnostic decision-making in the realm of veterinary medicine using X-rays as a fundamental auxiliary test. EEG signals were analysed using Principal Components (PCA) and Logistic Regression Analysis Results The principal component analysis revealed three patterns that accounted for 85% of the total variance in the EEG activity recorded while veterinary doctors read a clinical history, examined an X-ray image pertinent to a medical case, and selected among alternative diagnostic hypotheses. Two of these patterns are proposed to be associated with visual processing and the executive control of the task. The other two patterns are proposed to be related to the reasoning process that occurs during diagnostic decision-making. Conclusions PCA analysis was successful in disclosing the different patterns of brain activity associated with hypothesis triggering and handling (pattern P1); identification uncertainty and prevalence assessment (pattern P3), and hypothesis plausibility calculation (pattern P2); Logistic regression analysis was successful in disclosing the brain activity associated with clinical reasoning success, and together with regression analysis showed that clinical practice reorganizes the neural circuits supporting clinical reasoning.
Resumo:
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
Resumo:
The aim of the study was to investigate whether there is an ocular interaction in the flicker ERG responses reflecting luminance and cone opponency in normal human subjects. Flicker ERGs were recorded from one dilated eye of 10 healthy volunteers. Each subject was tested twice: once with and once without occluding the opposite eye. Red and green LEDs were modulated in counterphase in a Ganzfeld stimulator. ERG responses were recorded for different ratios of the modulation in the red and green LEDs and at 12 and 36 Hz. The amplitudes and phases of the fundamental components were compared between the conditions with and without occlusion. The 12-Hz flicker ERGs reflected activity of the cone opponent channel, whereas the 36-Hz data reflected luminance activity. There were no significant differences between the conditions with and without occluding the opposite eye for any of the stimulus protocols. Ocular interaction is absent in flicker ERGs reflecting cone opponent and luminance activity.
Resumo:
Proposed is a symbol-based decision-directed algorithm for blind equalisation of quadrature amplitude modulation (QAM) signals using a decision feedback scheme. Independently of QAM order, it presents: (i) an error equal to zero when the equaliser output coincides with the transmitted signal; (ii) simultaneous recovery of the modulus and phase of the signal; (iii) a misadjustment close to that of the normalised least-mean squares algorithm; (iv) fast convergence; and (v) the avoidance of degenerative solutions. Additionally, its stability is ensured when the step-size is properly chosen.
Resumo:
Nestmate recognition is fundamental for the maintenance of social organization in insect nests. It is becoming well recognized that cuticle hydrocarbons mediate the recognition process, although the origin of recognition cues in stingless bees remains poorly explored. The present study investigates the effects of endogenously-produced and environmentally-acquired components in cuticular hydrocarbons in stingless bees. The tests are conducted using colonies of Plebeia droryana Friese and Plebeia remota Holmberg. Recognition tests are performed with four different groups: conspecific nestmates, conspecific non-nestmates, heterospecifics and conspecific, genetically-related individuals that emerge in a heterospecific nest. This last group is produced by introducing brood cells of P. droryana into a P. remota colony, and the resulting adult bees are tested for acceptance 10 days after emergence. For all groups, 15 individuals are sampled for chemical analysis. The results show the acceptance of all conspecific nestmates, and the rejection of almost every conspecific non-nestmate and every heterospecific bee. Genetically-related individuals emerging from heterospecific nests present intermediate rejection (66.7% rejection). Chemical analysis shows that P. droryana individuals emerging in a P. remota nest have small amounts of alkene and diene isomers found in P. remota cuticle that are not found in workers from the natal nest. The data clearly show that the majority of the compounds present in P. droryana cuticle are endogenously produced, although a few unsaturated compounds are acquired from the environment, increasing the chemical differences and, consequently, the rejection percentages.
Resumo:
Long-term sample storage can affect the intensity of the hybridization signals provided by molecular diagnostic methods that use chemiluminescent detection. The aim of this study was to evaluate the effect of different storage times on the hybridization signals of 13 bacterial species detected by the Checkerboard DNA-DNA hybridization method using whole-genomic DNA probes. Ninety-six subgingival biofilm samples were collected from 36 healthy subjects, and the intensity of hybridization signals was evaluated at 4 different time periods: (1) immediately after collecting (n = 24) and (2) after storage at -20 degrees C for 6 months (n = 24), (3) for 12 months (n = 24), and (4) for 24 months (n = 24). The intensity of hybridization signals obtained from groups 1 and 2 were significantly higher than in the other groups (p < 0.001). No differences were found between groups 1 and 2 (p > 0.05). The Checkerboard DNA-DNA hybridization method was suitable to detect hybridization signals from all groups evaluated, and the intensity of signals decreased significantly after long periods of sample storage.
Resumo:
In stingless bees, the cell provisioning and oviposition process consists of several integrated behavioral sequences and several stereotyped queen-worker interactions. This study aims to demonstrate that chemical signals originating from the queen may contribute as cues for the sequence of the oviposition process in Melipona marginata. For this, we analyzed the cell before and after queen laying, and compared them with the cuticular hydrocarbons of the queen's abdomen, using a gas-chromatography and mass spectrometry system.
Resumo:
Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously.
Resumo:
Nuptial gift offering is a courtship trait found among several insect orders and some spider families. Recent studies indicate that this gift-giving behavior in spiders represents the male mating effort acting on female receptivity through a mechanism of foraging motivation. However, little attention has been given to the sensory channels that are influencing female acceptance. To understand the role of these sensory channels in female perception of a nuptial gift, we focused on the nuptial gift of the neotropical spider Paratrechalea ornata (Araneae, Trechaleidae). The nuptial gift of this species is composed of a prey item wrapped in silk, and previous works suggest that visual and/or chemical cues may be involved in inducing female grasping behavior. We isolated sensory channels using mimetic nuptial gifts (artificial items) or by manipulating real nuptial gifts. Isolated visual signals were not responsible for female acceptance, whereas chemical signals found within the nuptial gift silk layer induced female acceptance. Our findings clearly indicate that a chemical signal located in the silk of the nuptial gift is the main attractant channel, and we formulated 2 hypotheses to explain the mechanisms of action in the female sensory system. We also discuss the consequences of such signaling over female acceptance.
Resumo:
The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG + projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
It is well known that constant-modulus-based algorithms present a large mean-square error for high-order quadrature amplitude modulation (QAM) signals, which may damage the switching to decision-directed-based algorithms. In this paper, we introduce a regional multimodulus algorithm for blind equalization of QAM signals that performs similar to the supervised normalized least-mean-squares (NLMS) algorithm, independently of the QAM order. We find a theoretical relation between the coefficient vector of the proposed algorithm and the Wiener solution and also provide theoretical models for the steady-state excess mean-square error in a nonstationary environment. The proposed algorithm in conjunction with strategies to speed up its convergence and to avoid divergence can bypass the switching mechanism between the blind mode and the decision-directed mode. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
A tank experiment was conducted to check if self-potential (SP) signals can be generated when buried organic matter is wire-connected to a near-surface, oxygen-rich, sediment layer. This experiment demonstrated that once wired, there was a flux of electrons (hence an electric current) between the lower and upper layers of the sandbox with the system responding as a large-scale microbial fuel cell (a type of bioelectrochemical system). An electric current was generated by this process in the wire and the SP method was used to monitor the associated electric potential distribution at the top of the tank.. The electric field was controlled by the flux of electrons through the wire, the oxidation of the organic matter, the reduction of oxygen used as a terminal electron acceptor, and the distribution of the DC resistivity in the tank. The current density through the wire was limited by the availability of oxygen and not by the oxidation of the organic matter. This laboratory experiment incorporated key elements of the biogeobattery observed in some organic-rich contaminant plumes. This analogy includes the generation of SP signals associated with a flux of electrons, the capacity of buried organic matter in sustaining anodic reactions, network resistance connecting terminal redox reactions spatially separated in space, and the existence of anodic secondary coupled reactions. A resistivity tomogram of the tank, after almost a year in operation, suggests that oxidative processes triggered by this geobattery can be imaged with this method to determine the radius of influence of the bioelectrochemical system.
Resumo:
We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments reach the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino-electron and neutrino-nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.
Resumo:
Abstract Background Down syndrome is the most frequent genetic disorder in humans. Rare cases involving partial trisomy of chromosome 21 allowed a small chromosomal region common to all carriers, called Down Syndrome Critical Region (DSCR), to be determined. The DSCR1 gene was identified in this region and is expressed preferentially in the brain, heart and skeletal muscle. Recent studies have shown that DSCR1 belongs to a family of proteins that binds and inhibits calcineurin, a serine-threonine phosphatase. The work reported on herein consisted of a study of the subcellular location of DSCR1 and DSCR1-mutated forms by fusion with a green fluorescent protein, using various cell lines, including human. Results The protein's location was preferentially nuclear, independently of the isoform, cell line and insertion in the GFP's N- or C-terminal. A segment in the C-terminal, which is important in the location of the protein, was identified by deletion. On the other hand, site-directed mutational analyses have indicated the involvement of some serine and threonine residues in this event. Conclusion In this paper, we discuss the identification of amino acids which can be important for subcellular location of DSCR1. The involvement of residues that are prone to phosphorylation suggests that the location and function of DSCR1 may be regulated by kinases and/or phosphatases.