4 resultados para Dynamic Amplification Factor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We study the firing rate properties of a cellular automaton model for a neuronal network with chemical synapses. We propose a simple mechanism in which the nonlocal connections are included, through electrical and chemical synapses. In the latter case, we introduce a time delay which produces self-sustained activity. Nonlocal connections, or shortcuts, are randomly introduced according to a specified connection probability. There is a range of connection probabilities for which neuron firing occurs, as well as a critical probability for which the firing ceases in the absence of time delay. The critical probability for nonlocal shortcuts depends on the network size according to a power-law. We also compute the firing rate amplification factor by varying both the connection probability and the time delay for different network sizes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates in the limit U -> infinity and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole continuum in the limit U -> 0. Power-law singularities along boundary lines of the spectrum are described by effective impurity models that are explicitly invariant under spin and eta-spin SU(2) rotations. The Mott-Hubbard metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0. The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove singularity that persists as a consequence of integrability.
Resumo:
Purpose: We sought to determine the mechanisms of downregulation of the airway transcription factor Foxa2 in lung cancer and the expression status of Foxa2 in non-small-cell lung cancer (NSCLC). Methods: A series of 25 lung cancer cell lines were evaluated for Foxa2 protein expression, FOXA2 mRNA levels, FOXA2 mutations, FOXA2 copy number changes and for evidence of FOXA2 promoter hypermethylation. In addition, 32 NSCLCs were sequenced for FOXA2 mutations and 173 primary NSCLC tumors evaluated for Foxa2 expression using an immunohistochemical assay. Results: Out of the 25 cell lines, 13 (52%) had undetectable FOXA2 mRNA. The expression of FOXA2 mRNA and Foxa2 protein were congruent in 19/22 cells (p = 0.001). FOXA2 mutations were not identified in primary NSCLCs and were infrequent in cell lines. Focal or broad chromosomal deletions involving FOXA2 were not present. The promoter region of FOXA2 had evidence of hypermethylation, with an inverse correlation between FOXA2 mRNA expression and presence of CpG dinucleotide methylation (p < 0.0001). In primary NSCLC tumor specimens, there was a high frequency of either absence (42/173, 24.2%) or no/low expression (96/173,55.4%) of Foxa2. In 130 patients with stage I NSCLC there was a trend towards decreased survival in tumors with no/low expression of Foxa2 (HR of 1.6, 95%CI 0.9-3.1; p = 0.122). Conclusions: Loss of expression of Foxa2 is frequent in lung cancer cell lines and NSCLCs. The main mechanism of downregulation of Foxa2 is epigenetic silencing through promoter hypermethylation. Further elucidation of the involvement of Foxa2 and other airway transcription factors in the pathogenesis of lung cancer may identify novel therapeutic targets. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain adaptor protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.