33 resultados para Drugs - Structure-activity relationships

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r(2) = 0.98 and q(2) = 0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pK(i) values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. Structure( SBDD) and ligand-based drug design (LBDD) approaches bring together the most powerful concepts in modern chemistry and biology, linking medicinal chemistry with structural biology. The definition and assessment of both chemical and biological space have revitalized the importance of exploring the intrinsic complementary nature of experimental and computational methods in drug design. Major challenges in this field include the identification of promising hits and the development of high-quality leads for further development into clinical candidates. It becomes particularly important in the case of neglected tropical diseases (NTDs) that affect disproportionately poor people living in rural and remote regions worldwide, and for which there is an insufficient number of new chemical entities being evaluated owing to the lack of innovation and R&D investment by the pharmaceutical industry. This perspective paper outlines the utility and applications of SBDD and LBDD approaches for the identification and design of new small-molecule agents for NTDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-4-Phenyl 2-acetylpyridine thiosemicarbazone (H2Ac4Ph; N-(phenyl)-2-(1-(pyridin-2-yl)ethylidene) hydrazinecarbothioamide) and its N-4-ortho-, -meta- and -para-fluorophenyl (H2Ac4oFPh, H2Ac4mFPh, H2Ac4pFPh), N-4-ortho-, -meta- and -para-chlorophenyl (H2Ac4oClPh, H2Ac4mClPh, H2Ac4pClPh), N-4-ortho-, -meta- and -para-iodophenyl (H2Ac4oIPh, H2Ac4mIPh, H2Ac4pIPh) and N-4-ortho-, -meta- and -para-nitrophenyl (H2Ac4oNO(2)Ph, H2Ac4mNO(2)Ph, H2Ac4pNO(2)Ph) derivatives were assayed for their cytotoxicity against human malignant breast (MCF-7) and glioma (T98G and U87) cells. The compounds were highly cytotoxic against the three cell lineages (IC50: MCF-7, 52-0.16 nM; T98G, 140-1.0 nM; U87, 160-1.4 nM). All tested thiosemicarbazones were more cytotoxic than etoposide and did not present any haemolytic activity at up to 10(-5) M. The compounds were able to induce programmed cell death. H2Ac4pClPh partially inhibited tubulin assembly at high concentrations and induced cellular microtubule disorganization. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the relationship between glaucomatous structural damage assessed by the Cirrus Spectral Domain OCT (SDOCT) and functional loss as measured by standard automated perimetry (SAP). Methods: Four hundred twenty-two eyes (78 healthy, 210 suspects, 134 glaucomatous) of 250 patients were recruited from the longitudinal Diagnostic Innovations in Glaucoma Study and from the African Descent and Glaucoma Evaluation Study. All eyes underwent testing with the Cirrus SDOCT and SAP within a 6-month period. The relationship between parapapillary retinal nerve fiber layer thickness (RNFL) sectors and corresponding topographic SAP locations was evaluated using locally weighted scatterplot smoothing and regression analysis. SAP sensitivity values were evaluated using both linear as well as logarithmic scales. We also tested the fit of a model (Hood) for structure-function relationship in glaucoma. Results: Structure was significantly related to function for all but the nasal thickness sector. The relationship was strongest for superotemporal RNFL thickness and inferonasal sensitivity (R(2) = 0.314, P < 0.001). The Hood model fitted the data relatively well with 88% of the eyes inside the 95% confidence interval predicted by the model. Conclusions: RNFL thinning measured by the Cirrus SDOCT was associated with correspondent visual field loss in glaucoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallographically determined structure of biologically active 4,4-dichloro-1,3-diphenyl-4-telluraoct-2-en-1-one, 3, shows the coordination geometry for Te to be distorted psi-pentagonal bipyramidal based on a C2OCl3(lone pair) donor set. Notable is the presence of an intramolecular axial Te center dot center dot center dot O (carbonyl) interaction, a design element included to reduce hydrolysis. Raman and molecular modelling studies indicate the persistence of the Te center dot center dot center dot O(carbonyl) interaction in the solution (CHCl3) and gasphases, respectively. Docking studies of 3' (i.e. original 3 less one chloride) with Cathepsin B reveals a change in the configuration about the vinyl C = C bond. i.e. to E from Z (crystal structure). This isomerism allows the optimisation of interactions in the complex which features a covalent Te-SGCys29 bond. Crucially, the E configuration observed for 3' allows for the formation of a hypervalent Te center dot center dot center dot O interaction as well as an O center dot center dot center dot H-O hydrogen bond with the Gly27 and Glu122 residues, respectively. Additional stabilisation is afforded by a combination of interactions spanning the S1, S2, S1' and S2' sub-sites of Cathepsin B. The greater experimental inhibitory activity of 3 compared with analogues is rationalised by the additional interactions formed between 3' and the His110 and His111 residues in the occluding loop, which serve to hinder the entrance to the active site. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human African trypanosomiasis, also known as sleeping sickness, is a major cause of death in Africa, and for which there are no safe and effective treatments available. The enzyme aldolase from Trypanosoma brucei is an attractive, validated target for drug development. A series of alkyl‑glycolamido and alkyl-monoglycolate derivatives was studied employing a combination of drug design approaches. Three-dimensional quantitative structure-activity relationships (3D QSAR) models were generated using the comparative molecular field analysis (CoMFA). Significant results were obtained for the best QSAR model (r2 = 0.95, non-cross-validated correlation coefficient, and q2 = 0.80, cross-validated correlation coefficient), indicating its predictive ability for untested compounds. The model was then used to predict values of the dependent variables (pKi) of an external test set,the predicted values were in good agreement with the experimental results. The integration of 3D QSAR, molecular docking and molecular dynamics simulations provided further insight into the structural basis for selective inhibition of the target enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanothione reductase has long been investigated as a promising target for chemotherapeutic intervention in Chagas disease, since it is an enzyme of a unique metabolic pathway that is exclusively present in the pathogen but not in the human host, which has the analog Glutathione reductase. In spite of the present data-set includes a small number of compounds, a combined use of flexible docking, pharmacophore perception, ligand binding site prediction, and Grid-Independent Descriptors GRIND2-based 3D-Quantitative Structure-Activity Relationships (QSAR) procedures allowed us to rationalize the different biological activities of a series of 11 aryl beta-aminocarbonyl derivatives, which are inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR). Three QSAR models were built and validated using different alignments, which are based on docking with the TcTR crystal structure, pharmacophore, and molecular interaction fields. The high statistical significance of the models thus obtained assures the robustness of this second generation of GRIND descriptors here used, which were able to detect the most important residues of such enzyme for binding the aryl beta-aminocarbonyl derivatives, besides to rationalize distances among them. Finally, a revised binding mode has been proposed for our inhibitors and independently supported by the different methodologies here used, allowing further optimization of the lead compounds with such combined structure- and ligand-based approaches in the fight against the Chagas disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure-activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5a-h and 6a-h. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 +/- 2.8 and 3.5 +/- 1.8 mu M for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 +/- 2.8 mu M. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative structure – activity relationships (QSARs) developed to evaluate percentage of inhibition of STa-stimulated (Escherichia coli) cGMP accumulation in T84 cells are calculated by the Monte Carlo method. This endpoint represents a measure of biological activity of a substance against diarrhea. Statistical quality of the developed models is quite good. The approach is tested using three random splits of data into the training and test sets. The statistical characteristics for three splits are the following: (1) n = 20, r2 = 0.7208, q2 = 0.6583, s = 16.9, F = 46 (training set); n = 11, r2 = 0.8986, s = 14.6 (test set); (2) n = 19, r2 = 0.6689, q2 = 0.5683, s = 17.6, F = 34 (training set); n = 12, r2 = 0.8998, s = 12.1 (test set); and (3) n = 20, r2 = 0.7141, q2 = 0.6525, s = 14.7, F = 45 (training set); n = 11, r2 = 0.8858, s = 19.5 (test set). Based on the proposed here models hypothetical compounds which can be useful agents against diarrhea are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight new copper(II) complexes with halo-aspirinate anions have been synthesized: [Cu-2(Fasp)(4)(MeCN)(2)] center dot 2MeCN (1), [Cu-2(Clasp)(4)(MeCN)(2)]center dot 2MeCN (2), [Cu-2(Brasp)(4) (MeCn)(2)] center dot 2MeCn (3), {[Cu-2(Fasp)(4)(Pyrz)] center dot 2MeCN}(n) (4) {[Cu-2(Clasp)(4)(Pyrz)] center dot 2MeCN}(n) (5), [Cu-2(Brasp)(4)(Pyrz)](n) (6), [Cu-2(Clasp)(4)(4,4'-Bipy)](n) (7), and [Cu-2(Brasp)(4)(4,4'-Bipy)](n) (8) (Fasp: fluor-aspirinate; Clasp: chloro-aspirinate; Brasp: bromo-aspirinate; MeCN: acetonitrile; Pyrz: pyrazine; 4,4'-Bipy: 4,4'-bipyridine). The crystal structure of two 2 and 4 have been determined by X-ray diffraction methods. All compounds have been studied employing elemental analysis, IR, and UV-Visible spectroscopic techniques. The results have been compared with previous data reported for complexes with similar structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the pi-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the antioxidant activity of five resveratrol analogs by relating the activity of the molecule with its chemical structure. The five resveratrol analogs were synthesized and the antioxidant activity was evaluated using the DPPH method. The resveratrol was used as the reference standard. A descriptive statistical analysis and ANOVA followed by the Tukey test, with the aid of software. The antioxidant activity of resveratrol analogs was considered statistically different, with the analog A which showed activity superior to the others. The five analogs presented lower antioxidant activity than the reference standard (p <0.001). According to the findings, hydroxylation was the molecular modification that gave the best evaluated antioxidant activity result. Resveratrol analogs may have an important antioxidative activity, but with the one with the higher IC50 was presented by the natural compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biotransformation of the sesquiterpene lactone tagitinin C by the fungus Aspergillus terreus MT 5.3 yielded a rare derivative that was elucidated by spectrometric methods. The fungus led to the formation of a different product through an unusual epoxidation reaction between C4 and C5, formation of a C3,C10 ether bridge, and a methoxylation of the C1 of tagitinin C. The chemical structure of the product, namely 1 beta-methoxy-3 alpha-hydroxy-3,10 beta-4,5 alpha-diepoxy-8 beta-isobutyroyloxygermacr-11(13)-en-6 alpha,12-olide, is the same as that of a derivative that was recently isolated from the flowers of a Brazilian population of Mexican sunflower (Tithonia diversifolia), which is the source of the substrate tagitinin C. The in vitro cytotoxic activity of the substrate and the biotransformed product were evaluated in HL-60 cells using an MTT assay, and both compounds were found to be cytotoxic. We show that soil fungi may be useful in the biotransformation of sesquiterpene lactones, thereby leading to unusual changes in their chemical structures that may preserve or alter their biological activities, and may also mimic plant biosynthetic pathways for production of secondary metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formate dehydrogenase from Candida boidinii (FDH) was immobilized on three different magnetic supports: one composed by magnetite nanoparticles directly silanized with ARTS (aminopropyltriethoxysilane), i.e. MagNP-APTS: the second one containing a silica gel coated magnetite core which was further silanized with APTS (MagNP@SiO2-APTS), and the third one consisting of magnetite-APTS coated with Glyoxyl-Agarose (MagNP-Glyoxyl-Agarose). The catalytic activity of the three FDH systems was investigated as a function of pH and temperature. The silica gel coated nanoparticles provided the highest conversion rates; however, in terms of recycling, magnetite without the silica shell led to the most stable system. By using the enzyme tryptophan residues as internal fluorescence probes, the structure-activity behavior was investigated in the presence of the formate and NAD(+) substrates, revealing a rather contrasting behavior in the three cases. Because of its peculiar behavior, a direct interaction of the magnetic nanoparticles with the catalytic sites seems to be implicated in the case of MagNP-APTS. (C) 2012 Elsevier B.V. All rights reserved.