23 resultados para Drug target systems

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hemocompatibility of nanoparticles is of critical importance for their systemic administration as drug delivery systems. Formulations of lipid-core nanocapsules, stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan (LNC and LNC-CS), were prepared and characterized by laser diffraction (D[4,3]: 129 and 134 nm), dynamic light scattering (119 nm and 133 nm), nanoparticle tracking (D50: 124 and 139 nm) and particle mobility (zeta potential: -15.1 mV and + 9.3 mV) analysis. In vitro hemocompatibility studies were carried out with mixtures of nanocapsule suspensions in human blood at 2% and 10% (v/v). The prothrombin time showed no significant change independently of the nanocapsule surface potential or its concentration in plasma. Regarding the activated partial thromboplastin time, both suspensions at 2% (v/v) in plasma did not influence the clotting time. Even though suspensions at 10% (v/v) in plasma decreased the clotting times (p < 0.05), the values were within the normal range. The ability of plasma to activate the coagulation system was maintained after the addition of the formulations. Suspensions at 2% (v/v) in blood showed no significant hemolysis or platelet aggregation. In conclusion, the lipid-core nanocapsules uncoated or coated with chitosan are hemocompatible representing a potential innovative nanotechnological formulation for intravenous administration. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the efficacy of topical retinoic acid, skin reactions have limited its acceptance by patients. Other retinoids, like Retinyl Palmitate (RP), are considerably less irritating, but they are also less effective. In order to enhance the performance of retinoids, in this work RP has been added to cosmetic formulations such as nanoemulsions, which can provide better penetration of this active substance. Because the vehicle can directly influence the skin penetration and the effectiveness of RP, two skin care products containing 5000 UI RP have been developed and investigated, namely a nanoemulsifying system and a classic gel cream. In vitro penetration tests were conducted by using Franz diffusion cells and placing porcine ear skin and iso-propanol in the receptor compartment. The RP concentration in the skin layers was analyzed by high performance liquid chromatography, and a Zeta-Sizer system was employed for measurement of the the particle size distribution. The penetration tests revealed a large difference between the vehicles in terms of the RP concentrations in each skin layer. The classic gel cream furnished better RP penetration in both the stratum corneum and the epidermis without stratum corneum + dermis, as compared to the self-nanoemulsifying system. The two vehicles displayed the same particle size (between 100 and 200 nm). Better understanding of RP skin delivery using different vehicles has been acquired, and the importance of evaluating the efficacy of nanocosmetics. Results from the present study should also contribute to the assessment of commercial self-nanoemulsifying systems with potential application in the facile production of nanoemulsions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC8,9PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC8,9PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization. MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC8,9PC bilayers, there seem to be a correlation between the degree of DC8,9PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Rhodium (II) citrate (Rh2(H2cit)4) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh2(H2cit)4 as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh2(H2cit)4 and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh2(H2cit)4) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. Results Treatment with free Rh2(H2cit)4 induced cytotoxicity that was dependent on dose, time, and cell line. The IC50 values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 μM Rh2(H2cit)4-loaded maghemite nanoparticles (Magh-Rh2(H2cit)4) and Rh2(H2cit)4-loaded magnetoliposomes (Lip-Magh-Rh2(H2cit)4) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh2(H2cit)4, were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh2(H2cit)4 induces cell death by apoptosis. Conclusions The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh2(H2cit)4 treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh2(H2cit)4 delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Staphylococcus aureus TenA (SaTenA) is a thiaminase type II enzyme that catalyzes the deamination of aminopyrimidine, as well as the cleavage of thiamine into 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 5-(2-hydroxyethyl)-4-methylthiazole (THZ), within thiamine (vitamin B1) metabolism. Further, by analogy with studies of Bacillus subtilis TenA, SaTenA may act as a regulator controlling the secretion of extracellular proteases such as the subtilisin type of enzymes in bacteria. Thiamine biosynthesis has been identified as a potential drug target of the multi-resistant pathogen S. aureus and therefore all enzymes involved in the S. aureus thiamine pathway are presently being investigated in detail. Here, the structure of SaTenA, determined by molecular replacement and refined at 2.7 A ° resolution to an R factor of 21.6% with one homotetramer in the asymmetric unit in the orthorhombic space group P212121, is presented. The tetrameric state of wild-type (WT) SaTenA was postulated to be the functional biological unit and was confirmed by small-angle X-ray scattering (SAXS) experiments in solution. To obtain insights into structural and functional features of the oligomeric SaTenA, comparative kinetic investigations as well as experiments analyzing the structural stability of the WT SaTenA tetramer versus a monomeric SaTenA mutant were performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work reports on the photophysical properties of zinc porphyrins meso-tetrakis methylpyridiniumyl (Zn2+TMPyP) and meso-tetrakis sulfonatophenyl (Zn2+TPPS) in homogeneous aqueous solutions and in the presence of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) micelles. The excited-state dynamic was investigated with the Z-scan technique, UV-Vis absorption, and fluorescence spectroscopy. Photophysical parameters were obtained by analyzing the experimental data with a conventional five-energy-level diagram. The interaction of the charged side porphyrin groups with oppositely charged surfactants can reduce the electrostatic repulsion between porphyrin molecules leading to aggregation, which affected the porphyrin characteristics such as absorption cross-sections, lifetimes and quantum yields. The interaction between anionic ZnTPPS with cationic CTAB micelles induced the formation of porphyrin J-aggregates, while this effect was not observed in the interaction of ZnTMPyP with SDS micelles. This difference is, probably, due to the difference in electrostatic repulsion between the porphyrin molecules. The insights obtained by these results are important for the understanding of the photophysical behavior of porphyrins, regarding potential applications in pharmacokinetics as encapsulation of photosensitizer for drug delivery systems and in its interaction with cellular membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Albendazole sulfoxide (ABZSO), a broad spectrum anthelmintic drug extensively used in veterinary medicine, exhibits a low and erratic bioavailability due to its poor solubility in biological fluids. The aims of this study were the development, physicochemical characterization, and in vitro release profile evaluation of ABZSO-loaded Eudragit RS PO (R) microparticles (MPs) in order to improve the rate of dissolution and the dissolved percentage of the drug in pH 7.4. MPs were successfully obtained by the emulsification/solvent evaporation method, achieving entrapment efficiency and process yield of about 60% and mean size of 254 nm. The in vitro release profile study showed that dissolution of ABZSO followed a pseudo-second order kinetics and MPs were able to increase significantly (p < 0.05) the rate of dissolution of ABZSO compared to the micronized and non-micronized free drug, what could lead to an improvement in bioavailability and, consequently, in the antiparasitic activity. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: We investigated the relation between duration of dual antiplatelet therapy (DAPT) and clinical outcomes up to 12 months after Genous (TM) endothelial progenitor cell capturing R stent (TM) placement in patients from the e-HEALING registry. Background: Cessation of (DAPT) has been shown to be associated with the occurrence of stent thrombosis (ST). After Genous placement, 1 month of DAPT is recommended. Methods: Patients were analyzed according to continuation or discontinuation of DAPT at a 30-day and 6-month landmark, excluding patients with events before the landmark. Each landmark was a new baseline, and outcomes were followed up to 12 months after stenting. The main outcome for our current analysis was target vessel failure (TVF), defined as target vessel-related cardiac death or myocardial infarction and target vessel revascularization. Secondary outcomes included ST. (Un)adjusted hazard ratios (HR) for TVF were calculated with Cox regression. Results: No difference was observed in the incidence of TVF [HR: 1.03; 95% confidence intervals (CI): 0.651.65, P = 0.89] in patients continuing DAPT (n = 4,249) at 30 days versus patients stopped (n = 309), and HR: 0.82 (95% CI: 0.551.23, P = 0.34) in patients continuing DAPT (n = 2,654) at 6 months versus patients stopped [n = 1,408] DAPT). Furthermore, no differences were observed in ST. Even after addition of identified independent predictors for TVF, adjusted TVF hazards were comparable. Conclusions: In a post-hoc analysis of e-HEALING, duration of DAPT was not associated with the occurrence of the outcomes TVF or ST. The Genous stent may be an attractive treatment especially in patients at increased risk for (temporary) cessation of DAPT or bleeding. (C) 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R similar to 100 000) high S/N (600-650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of sigma less than or similar to 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as sigma similar or equal to 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 +/- 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only +0.02 +/- 0.02 dex, +0.02 +/- 0.01 dex and +0.01 +/- 0.01 km s(-1) higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 +/- 0.02 M-circle dot and that it is similar to 1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T-cond greater than or similar to 1000 K) are slightly (similar to 0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T-cond in differential abundances (twins -HIP 56948) can be reproduced very well by adding similar to 3 M-circle plus of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes have been employed as potential drug carriers. However, after their in vivo administration, they can be destabilized by proteins of complement system, contributing to the clearance of vesicles from blood circulation. Antioxidant flavonoids such as quercetin have been reported to be beneficial to human health, but their low water solubility and bioavailability limit their enteric administration. Therefore, the development of appropriate flavonoid-carriers could be of great importance to drug therapy. The aim of the present study was to evaluate the activation of human complement system proteins by liposomes composed of soya phosphatidylcholine (SPC) and cholesterol (CHOL) or cholesteryl ethyl ether (CHOL-OET) loaded with quercetin or not. The consumption of complement, via classical (CP) and alternative (AP) pathways, by different vesicles was evaluated using a hemolytic assay and quantitative determination of iC3b and natural antibodies deposited on empty liposomal surfaces by ELISA. The main results showed that empty liposomes composed of large amounts of CHOL consumed more complement components than the others for both CP and AP. Furthermore, replacement of CHOL with CHOL-OET reduced complement consumption via both CP and AP. Incorporation of quercetin did not change CP and AP consumption. Deposition of iC3b, IgG and IgM in vesicles composed of SPC: CHOL-OET at a molar ratio of 1.5:1 was lower compared to the others. Taken together, these observations suggest that liposomes composed of SPC: CHOL-OET at a molar ratio of 1.5:1 are the most appropriate among the vesicles studied herein to be used as a drug carrier system in further investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyamine biosynthesis enzymes are promising drug targets for the treatment of leishmaniasis, Chagas' disease and African sleeping sickness. Arginase, which is a metallohydrolase, is the first enzyme involved in polyamine biosynthesis and converts arginine into ornithine and urea. Ornithine is used in the polyamine pathway that is essential for cell proliferation and ROS detoxification by trypanothione. The flavonols quercetin and quercitrin have been described as antitrypanosomal and antileishmanial compounds, and their ability to inhibit arginase was tested in this work. We characterized the inhibition of recombinant arginase from Leishmania (Leishmania) amazonensis by quercetin, quercitrin and isoquercitrin. The IC50 values for quercetin, quercitrin and isoquercitrin were estimated to be 3.8, 10 and 4.3 mu M, respectively. Quercetin is a mixed inhibitor, whereas quercitrin and isoquercitrin are uncompetitive inhibitors of L. (L.) amazonensis arginase. Quercetin interacts with the substrate L-arginine and the cofactor Mn2+ at pH 9.6, whereas quercitrin and isoquercitrin do not interact with the enzyme's cofactor or substrate. Docking analysis of these flavonols suggests that the cathecol group of the three compounds interact with Asp129, which is involved in metal bridge formation for the cofactors Mn-A(2+) and Mn-B(2+) in the active site of arginase. These results help to elucidate the mechanism of action of leishmanicidal flavonols and offer new perspectives for drug design against Leishmania infection based on interactions between arginase and flavones. (C) 2012 Elsevier Inc. All rights reserved.