7 resultados para Domain-specific programming languages

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results: We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions: The use of an established and well-known graphical language in the development of biomedical ontologies provides a more intuitive form of capturing and representing knowledge than using only text-based notations. The use of the profile requires the domain expert to reason about the underlying semantics of the concepts and relationships being modeled, which helps preventing the introduction of inconsistencies in an ontology under development and facilitates the identification and correction of errors in an already defined ontology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Children with Acquired Immune Deficiency Syndrome (AIDS) exhibit impaired dental status, which can affect their quality of life. This study assessed the oral health-related quality of life of these patients and associated factors. Methods The "Child Perceptions Questionnaire 11-14", rating overall and domain-specific (oral symptoms, functional limitations, emotional well being, and social well being) oral health-related quality of life (OHR-QoL) was completed by 88 children with AIDS assisted in the Child Institute, Sao Paulo, Brazil. Parents or guardians provided behavioural and socio-demographic information. The clinical status was provided by hospital records. OHR-QoL covariates were assessed by Poisson regression analysis. Results The most affected OHR-QoL subscale concerned oral symptoms, whose rate was 23.9%. The direct answer for oral health and well being made up a rate of 47.7%. Brushing the teeth less than two times a day and viral load exceeding 10,000 HIV-RNA copies per millilitre of plasma were directly associated (p < 0.05) with a poorer oral health-related quality of life. Conclusions Children with more severe AIDS manifestations complained of poorer status of oral symptoms, functional limitations, emotional and social well being related to their oral health. Recognizing the factors that are associated with poorer OHR-QoL in children with AIDS may contribute to the planning of dental services for this population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: An extensive variety of prenatal insults are associated with an increased incidence of metabolic and cardiovascular disorders in adult life. We previously demonstrated that maternal global nutrient restriction during pregnancy leads to increased blood pressure and endothelial dysfunction in the adult offspring. This study aimed to assess whether prenatal exposure to nutritional insult has transgenerational effects in F-2 and F-3 offspring. Main methods: For this, female Wistar rats were randomly divided into two groups on day 1 of pregnancy: a control group fed standard chow ad libitum and a restricted group fed 50% of the ad libitum intake throughout gestation. At delivery, all animals were fed a standard laboratory chow diet. At 11 weeks of age, one female and one male from each restricted litter were randomly selected and mated with rats from another restricted litters in order to generate the F-2 offspring. The same procedure produced F-3 generation. Similarly, the rats in the control group were bred for each generation. Key Findings: Our findings show that the deleterious effects of maternal nutrient restriction to which the F-0 mothers were exposed may not be limited to the male first generation. In fact, we found that elevated blood pressure, an impaired vasodilatory response to acetylcholine and alterations in NO production were all transferred to the subsequent males from F-2 and F-3 generations. Significance: Our data show that global nutrient restriction during pregnancy results in a specific phenotype that can be passed transgenerationally to a second and third generation. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noonan syndrome (NS) and Noonan-related disorders [cardio-facio-cutaneous (CFC), Costello, Noonan syndrome with multiple lentigines (NS-ML), and neurofibromatosis-Noonan syndromes (NFNS)] are a group of developmental disorders caused by mutations in genes of the RAS/MAPK pathway. Mutations in the KRAS gene account for only a small proportion of affected Noonan and CFC syndrome patients that present an intermediate phenotype between these two syndromes, with more frequent and severe intellectual disability in NS and less ectodermal involvement in CFC syndrome, as well as atypical clinical findings such as craniosynostosis. Recently, the first familial case with a novel KRAS mutation was described. We report on a second vertical transmission (a mother and two siblings) with a novel mutation (p.M72L), in which the proband has trigonocephaly and the affected mother and sister, prominent ectodermal involvement. Metopic suture involvement has not been described before, expanding the main different cranial sutures which can be affected in NS and KRAS gene mutations. The gene alteration found in the studied family is in close proximity to the one reported in the other familial case (close to the switch II region of the G-domain), suggesting that this specific region of the gene could have less severe effects on intellectual ability than the other KRAS gene mutations found in NS patients and be less likely to hamper reproductive fitness. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain adaptor protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important in embedded and high-performance computing systems. They allow performance levels close to the ones obtained with Application-Specific Integrated Circuits, while still keeping design and implementation flexibility. However, to efficiently program FPGAs, one needs the expertise of hardware developers in order to master hardware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a high-level compilation flow (e.g., from C programs) still have to address open issues before broader efficient results can be obtained. Bearing in mind an FPGA available resources, it has been developed LALP (Language for Aggressive Loop Pipelining), a novel language to program FPGA-based accelerators, and its compilation framework, including mapping capabilities. The main ideas behind LALP are to provide a higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware resources, and to allow the programmer to control execution stages whenever the compiler techniques are unable to generate efficient implementations. Those features are particularly useful to implement loop pipelining, a well regarded technique used to accelerate computations in several application domains. This paper describes LALP, and shows how it can be used to achieve high-performance computing solutions.