3 resultados para Distributed shared memory

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the early 20th century, many researchers have attempted to determine how fungi are able to emit light. The first successful experiment was obtained using the classical luciferin-luciferase test that consists of mixing under controlled conditions hot (substrate/luciferin) and cold (enzyme/luciferase) water extracts prepared from bioluminescent fungi. Failures by other researchers to reproduce those experiments using different species of fungi lead to the hypothesis of a non-enzymatic luminescent pathway. Only recently, the involvement of a luciferase in this system was proven, thus confirming its enzymatic nature. Of the 100 000 described species in Kingdom Fungi, only 71 species are known to be luminescent and they are distributed unevenly amongst four distantly related lineages. The question we address is whether the mechanism of bioluminescence is the same in all four evolutionary lineages suggesting a single origin of luminescence in the Fungi, or whether each lineage has a unique mechanism for light emission implying independent origins. We prepared hot and cold extracts of numerous species representing the four bioluminescent fungal lineages and performed cross-reactions (luciferin x luciferase) in all possible combinations using closely related non-luminescent species as controls. All cross-reactions with extracts from luminescent species yielded positive results, independent of lineage, whereas no light was emitted in cross-reactions with extracts from non-luminescent species. These results support the hypothesis that all four lineages of luminescent fungi share the same type of luciferin and luciferase, that there is a single luminescent mechanism in the Fungi, and that fungal luciferin is not a ubiquitous molecule in fungal metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Schistosoma mansoni is a blood helminth parasite that causes schistosomiasis, a disease that affects 200 million people in the world. Many orthologs of known mammalian genes have been discovered in this parasite and evidence is accumulating that some of these genes encode proteins linked to signaling pathways in the parasite that appear to be involved with growth or development, suggesting a complex co-evolutionary process. Results: In this work we found 427 genes conserved in the Deuterostomia group that have orthologs in S. mansoni and no members in any nematodes and insects so far sequenced. Among these genes we have identified Insulin Induced Gene (INSIG), Interferon Regulatory Factor (IRF) and vasohibin orthologs, known to be involved in mammals in mevalonate metabolism, immune response and angiogenesis control, respectively. We have chosen these three genes for a more detailed characterization, which included extension of their cloned messages to obtain full-length sequences. Interestingly, SmINSIG showed a 10-fold higher expression in adult females as opposed to males, in accordance with its possible role in regulating egg production. SmIRF has a DNA binding domain, a tryptophan-rich N-terminal region and several predicted phosphorylation sites, usually important for IRF activity. Fourteen different alternatively spliced forms of the S. mansoni vasohibin (SmVASL) gene were detected that encode seven different protein isoforms including one with a complete C-terminal end, and other isoforms with shorter C-terminal portions. Using S. mansoni homologs, we have employed a parsimonious rationale to compute the total gene losses/gains in nematodes, arthropods and deuterostomes under either the Coelomata or the Ecdysozoa evolutionary hypotheses; our results show a lower losses/gains number under the latter hypothesis. Conclusion: The genes discussed which are conserved between S. mansoni and deuterostomes, probably have an ancient origin and were lost in Ecdysozoa, being still present in Lophotrochozoa. Given their known functions in Deuterostomia, it is possible that some of them have been co-opted to perform functions related (directly or indirectly) to host adaptation or interaction with host signaling processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Although B cells are important as antigen presenting cells (APC) during the immune response, their role in DNA vaccination models is unknown. Methods In this study in vitro and in vivo experiments were performed to evaluate the ability of B cells to protect mice against Mycobacterium tuberculosis challenge. Results In vitro and in vivo studies showed that B cells efficiently present antigens after naked plasmid pcDNA3 encoding M. leprae 65-kDa heat shock protein (pcDNA3-Hsp65) internalization and protect B knock-out (BKO) mice against Mycobacterium tuberculosis infection. pcDNA3-Hsp65-transfected B cells adoptively transferred into BKO mice rescued the memory phenotypes and reduced the number of CFU compared to wild-type mice. Conclusions These data not only suggest that B cells play an important role in the induction of CD8 T cells but also that they improve bacterial clearance in DNA vaccine model.