17 resultados para Disease resistance
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Generation means was used to study the mode of inheritance of resistance to anthracnose stalk rot in tropical maize. Each population was comprised of six generations in two trials under a randomized block design. Inoculations were performed using a suspension of 105 conidia mL(-1) applied into the stalk. Internal lesion length was directly measured by opening the stalk thirty days after inoculation. Results indicated contrasting modes of inheritance. In one population, dominant gene effects predominated. Besides, additive x dominant and additive x additive interactions were also found. Intermediate values of heritability indicated a complex resistance inheritance probably conditioned by several genes of small effects. An additive-dominant genetic model sufficed to explain the variation in the second population, where additive gene effects predominated. Few genes of major effects control disease resistance in this cross. Heterosis widely differed between populations, which can be attributed to the genetic background of the parental resistant lines.
Resumo:
Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the beta-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters.
Resumo:
Background: The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. Methodology and Principal Findings: As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST) to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO) analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling. Conclusions/Significance: We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.
Resumo:
Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model "diploid embryogenic callus protoplast + diploid mesophyll-derived protoplast". Protoplasts were isolated from embryogenic calli of 'Pera' and 'Westin' sweet orange cultivars (Citrus sinensis) and from young leaves of 'Fremont', Nules', and 'Thomas' mandarins (C. reticulata), and 'Nova' tangelo [C. reticulata x (C. paradisi x C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when 'Pera' sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of 'Pera' sweet orange + 'Fremont' mandarin, 3 'Pera' sweet orange + 'Nules' mandarin, and 2 'Pera' sweet orange + 'Nova' tangelo, and all the diploid regenerated plants showed the 'Pera' sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96 h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.
Resumo:
Transgenic Citrus sinensis (L.) Osb. plants, cvs. Valencia and Hamlin, expressing Citrus tristeza virus (CTV) derived sequences were obtained by genetic transformation. The gene constructs were pCTV-CP containing the 25 kDa major capsid protein gene (CTV-CP), pCTV-dsCP containing the same CTV-CP gene in an intron-spliced hairpin construct, and pCTV-CS containing a 559 nt conserved region of the CTV genome. The transgenic lines were identified by PCR and the transgene integration was confirmed by Southern blot. Transgene mRNA could be detected in most transgenic lines containing pCTV-CP or pCTV-CS transgene. The mRNA of pCTV-dsCP transgene was almost undetectable, with very light bands in most analyzed plants. The transgene transcription appears to be closely linked to the type of gene construct. The virus challenge assays reveals that all transgenic lines were infected. However, it was possible to identify propagated clones of transgenic plants of both cultivars studied with a low virus titer, with values similar to the non-inoculated plants (negative control). These results suggested that the transgenic plants present some level of resistance to virus replication. The higher number of clones with low virus titer and where mRNA could not be detected or was presented in a very light band was found for pCTV-dsCP-derived transgenic lines.
Resumo:
The objective of this study was to evaluate the methodology to establish the hemolytic activity of alternative complement pathway as an indicator of the innate immunity in Brazilian fish pacu (Piaractus mesopotamicus), in addition to verifying the influence of beta-glucan as an immunostimulant. Fish were fed with diets containing 0, 0.1 and 1% beta-glucan, during seven days, and then inoculated with Aeromonas hydrophila. Seven days after the challenge, they were bled for serum extraction. The methodology consisted of a kinetic assay that allows calculating the required time for serum proteins of the complement to promote 50% lysis of a rabbit red blood cell suspension. The method developed in mammals was successfully applied for pacu and determined that the hemolytic activity of the proteins of the complement system (alternative pathway) increased after the pathogen challenge, but was not influenced by the beta-glucan treatment.
Resumo:
Certain bacteria present on frog skin can prevent infection by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), conferring disease resistance. Previous studies have used agar-based in vitro challenge assays to screen bacteria for Bd-inhibitory activity and to identify candidates for bacterial supplementation trials. However, agar-based assays can be difficult to set up and to replicate reliably. To overcome these difficulties, we developed a semi-quantitative spectrophotometric challenge assay technique. Cell-free supernatants were prepared from filtered bacterial cultures and added to 96-well plates in replicated wells containing Bd zoospores suspended in tryptone-gelatin hydrolysate-lactose (TGhL) broth medium. Plates were then read daily on a spectrophotometer until positive controls reached maximum growth in order to determine growth curves for Bd. We tested the technique by screening skin bacteria from the Australian green-eyed tree frog Litoria serrata. Of bacteria tested, 31% showed some degree of Bd inhibition, while some may have promoted Bd growth, a previously unknown effect. Our cell-free supernatant challenge assay technique is an effective in vitro method for screening bacterial isolates for strong Bd-inhibitory activity. It contributes to the expanding field of bioaugmentation research, which could play a significant role in mitigating the effects of chytridiomycosis on amphibians around the world.
Resumo:
Patients with type 2 diabetes mellitus (T2DM) exhibit insulin resistance associated with obesity and inflammatory response, besides an increased level of oxidative DNA damage as a consequence of the hyperglycemic condition and the generation of reactive oxygen species (ROS). In order to provide information on the mechanisms involved in the pathophysiology of T2DM, we analyzed the transcriptional expression patterns exhibited by peripheral blood mononuclear cells (PBMCs) from patients with T2DM compared to non-diabetic subjects, by investigating several biological processes: inflammatory and immune responses, responses to oxidative stress and hypoxia, fatty acid processing, and DNA repair. PBMCs were obtained from 20 T2DM patients and eight non-diabetic subjects. Total RNA was hybridized to Agilent whole human genome 4x44K one-color oligo-microarray. Microarray data were analyzed using the GeneSpring GX 11.0 software (Agilent). We used BRB-ArrayTools software (gene set analysis - GSA) to investigate significant gene sets and the Genomica tool to study a possible influence of clinical features on gene expression profiles. We showed that PBMCs from T2DM patients presented significant changes in gene expression, exhibiting 1320 differentially expressed genes compared to the control group. A great number of genes were involved in biological processes implicated in the pathogenesis of T2DM. Among the genes with high fold-change values, the up-regulated ones were associated with fatty acid metabolism and protection against lipid-induced oxidative stress, while the down-regulated ones were implicated in the suppression of pro-inflammatory cytokines production and DNA repair. Moreover, we identified two significant signaling pathways: adipocytokine, related to insulin resistance; and ceramide, related to oxidative stress and induction of apoptosis. In addition, expression profiles were not influenced by patient features, such as age, gender, obesity, pre/post-menopause age, neuropathy, glycemia, and HbA(1c) percentage. Hence, by studying expression profiles of PBMCs, we provided quantitative and qualitative differences and similarities between T2DM patients and non-diabetic individuals, contributing with new perspectives for a better understanding of the disease. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
It is well established that atherogenic dyslipidemia, characterized by high levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL) cholesterol and low levels of high-density lipoprotein (HDL) cholesterol, constitutes important risk factors for cardiovascular disease. Regular exercise has been associated with a reduced risk for metabolic diseases. However, studies supporting the concept that resistance exercise is a modifier of blood lipid parameters are often contradictory. The aim of this study was to investigate the effects of high-intensity resistance exercise on the serum levels of TG, TC, HDL and non-HDL cholesterol, glucose, and the liver function enzymes alanine aminotransferase (ALT, EC 2.6.1.2) and aspartate aminotransferase (AST, EC 2.6.1.1) in golden Syrian hamsters (Mesocricetus auratus (Waterhouse, 1839)) fed a hypercholesterolemic diet. Sedentary groups (S) and exercise groups (E) were fed a standard diet (SS and ES) or a cholesterol-enriched diet (standard plus 1% cholesterol, SC and EC). Resistance exercise was performed by jumps in the water, carrying a load strapped to the chest, representing 10 maximum repetitions (10 RM, 30 s rest, five days per week for five weeks). Mean blood sample comparisons were made by ANOVA + Tukey or ANOVA + Kruskal-Wallis tests (p < 0.05) to compare parametric and nonparametric samples, respectively. There were no differences in blood lipids between the standard diet groups (SS and ES) (p > 0.05). However, the EC group increased the glucose, non-HDL, and TC levels in comparison with the ES group. Moreover, the EC group increased the TG levels versus the SC group (p < 0.05). In addition, the ALT levels were increased only by diet treatment. These findings indicated that high-intensity resistance exercise contributed to dyslipidemia in hamsters fed a hypercholesterolemic diet, whereas liver function enzymes did not differ in regards to the exercise protocol.
Resumo:
Salmonellosis is a major health problem worldwide. Serovar Enteritidis has been a primary cause of Salmonella outbreaks in many countries. In Brazil, few molecular typing studies have been performed. The aims of this study were to molecularly type Salmonella Enteritidis strains isolated in Brazil in order to determine the genetic relationship between strains of food and human origin, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 128 S. Enteritidis strains isolated from human feces (67) and food (61) between 1986 and 2010 were studied. The genotypic diversity was assessed by ERIC-PCR and PFGE using Xbal, the antimicrobial resistance by the disc-diffusion assay and the presence of the SPI-1, SPI-2 and pSTV virulence genes assessed by PCR. The ERIC-PCR results revealed that 112 strains exhibited a similarity of >85.4% and the PFGE that 96 strains exhibited a similarity of >80.0%. Almost all strains (97.6%) harbored all 13 virulence genes investigated. Thirty-six strains (28.12%) were resistant to nalidixic acid. In conclusion, the nalidixic acid resistance observed after 1996 is indicative of an increase in the use of this drug. It may be suggested that these 128 strains might have descended from a common ancestor that differed little over 24 years and has been both contaminating food and humans and causing disease for more than two decades in Brazil. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Federal University of Sao Paulo
Resumo:
We present here the clinical and molecular data of two patients with acromegaly treated with octreotide LAR after non-curative surgery, and who presented different responses to therapy. Somatostatin receptor type 2 and 5 (SSTR2 and SSTR5), and aryl hydrocarbon receptor-interacting protein (AIP) expression levels were analyzed by qPCR. In both cases, high SSTR2 and low SSTR5 expression levels were detected; however, only one of the patients achieved disease control after octreotide LAR therapy. When we analyzed AIP expression levels of both cases, the patient whose disease was controlled after therapy exhibited AIP expression levels that were two times higher than the patient whose disease was still active. These two cases illustrate that, although the currently available somatostatin analogs bind preferentially to SSTR2, some patients are not responsive to therapy despite high expression of this receptor. This difference could be explained by differences in post-receptor signaling pathways, including the recently described involvement of AIP. Arq Bras Endocrinol Metab. 2012;56(8):501-6
Resumo:
Sao Paulo Research Foundation [FAPESP/05/57710-3]
Resumo:
The impact of leucine supplementation and resistance exercise (RE) on plasma lipid profile was evaluated in adult rats treated with dexamethasone, an experimental model of dyslipidemia. Total cholesterol did not differ among groups. Furthermore, leucine supplementation did not promote improvement in the plasma total cholesterol and LDL-c of the animals. However, plasma TG and VLDL-c were significantly decreased and HDL-c increased after 7 days of leucine supplementation combined with RE. In conclusion, leucine supplementation combined with RE, but not isolated, improved the plasma lipid profile of dexamethasone-induced dyslipidemic rats.
Resumo:
Objective This study was undertaken to evaluate a possible association of adipocytokines with metabolic syndrome (MetS), inflammation and other cardiovascular risk factors in primary antiphospholipid syndrome (PAPS). Methods Fifty-six PAPS patients and 72 controls were included. Adiponectin, leptin, visfatin, resistin, plasminogen activator inhibitor-1 (PAI-1), lipoprotein (a), glucose, ESR, CRP, uric acid and lipid profiles were measured. The presence of MetS was determined as defined by the International Diabetes Federation (IDF), and insulin resistance was rated using the homeostasis model assessment (HOMA) index. Results Concentrations of leptin were higher [21.5 (12.9-45.7) ng/mL] in PAPS patients than in the controls ([2.1 (6.9-26.8) ng/mL), p=0.001]. In PAPS patients, leptin and PAI-1 levels were positively correlated with BMI (r=0.61 and 0.29), HOMA-IR (r=0.71 and 0.28) and CRP (r=0.32 and 0.36). Adiponectin levels were negatively correlated with BMI (r=-0.28), triglycerides (r=-0.43) and HOMA-IR (r=-0.36) and positively correlated with HDL-c (r=0.37) and anti-beta 2GPI IgG (r=0.31). The presence of MetS in PAPS patients was associated with higher levels of leptin (p=0.002) and PAI-1 (p=0.03) levels and lower levels of adiponectin (p=0.042). Variables that independently influenced the adiponectin concentration were the triglyceride levels (p<0.001), VLDL-c (P=0.002) and anti-beta 2GPI IgG (p=0.042); the leptin levels were BMI (p<0.001), glucose (p=0.046), HOMA-IR (p<0.001) and ESR (p=0.006); and the PAI-1 levels were CRP (p=0.013) and MetS (p=0.048). Conclusion This study provides evidence that adipocytokines may be involved in low-grade inflammation, insulin resistance and MetS in PAPS patients.