2 resultados para Digital Video Broadcasting
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
There is a wide range of telecommunications services that transmit voice, video and data through complex transmission networks and in some cases, the service has not an acceptable quality level for the end user. In this sense the study of methods for assessing video quality and voice have a very important role. This paper presents a classification scheme, based on different criteria, of the methods and metrics that are being studied in recent years. This paper presents how the video quality is affected by degradation in the transmission channel in two kinds of services: Digital TV (ISDB-TB) due the fading in the air interface and video streaming service on an IP network due packet loss. For Digital TV tests was set up a scenario where the digital TV transmitter is connected to an RF channel emulator, where are inserted different fading models and at the end, the videos are saved in a mobile device. The tests of streaming video were performed in an isolated scenario of IP network, which are scheduled several network conditions, resulting in different qualities of video reception. The video quality assessment is performed using objective assessment methods: PSNR, SSIM and VQM. The results show how the losses in the transmission channel affects the quality of end-user experience on both services studied.
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.