6 resultados para Diesel engines
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
OBJECTIVE: Due to their toxicity, diesel emissions have been submitted to progressively more restrictive regulations in developed countries. However, in Brazil, the implementation of the Cleaner Diesel Technologies policy (Euro IV standards for vehicles produced in 2009 and low-sulfur diesel with 50 ppm of sulfur) was postponed until 2012 without a comprehensive analysis of the effect of this delay on public health parameters. We aimed to evaluate the impact of the delay in implementing the Cleaner Diesel Technologies policy on health indicators and monetary health costs in Brazil. METHODS: The primary estimator of exposure to air pollution was the concentration of ambient fine particulate matter (particles with aerodynamic diameters, <2.5 mu m, [PM2.5]). This parameter was measured daily in six Brazilian metropolitan areas during 2007-2008. We calculated 1) the projected reduction in the PM2.5 that would have been achieved if the Euro IV standards had been implemented in 2009 and 2) the expected reduction after implementation in 2012. The difference between these two time curves was transformed into health outcomes using previous dose-response curves. The economic valuation was performed based on the DALY (disability-adjusted life years) method. RESULTS: The delay in implementing the Cleaner Diesel Technologies policy will result in an estimated excess of 13,984 deaths up to 2040. Health expenditures are projected to be increased by nearly US$ 11.5 billion for the same period. CONCLUSIONS: The present results indicate that a significant health burden will occur because of the postponement in implementing the Cleaner Diesel Technologies policy. These results also reinforce the concept that health effects must be considered when revising fuel and emission policies.
Resumo:
In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 mu m in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.
Resumo:
We describe production of methyl and ethyl esters derived from baru oil (Dipteryx alata Vog.). Water and alcohols are removed from the biodiesel obtained by simple distillation. We study the acidity, density, iodine number, viscosity, water content, peroxide number, external appearance, and saponification number of the oil, its methyl and ethyl esters (biodiesels) and their blends (B5, B10, B15, B20, and B30) with commercial diesel fuel.
Resumo:
Zin WA, Silva AG, Magalhaes CB, Carvalho GM, Riva DR, Lima CC, Leal-Cardoso JH, Takiya CM, Valen a SS, Saldiva PH, Faffe DS. Eugenol attenuates pulmonary damage induced by diesel exhaust particles. J Appl Physiol 112: 911-917, 2012. First published December 22, 2011; doi: 10.1152/japplphysiol.00764.2011.-Environmentally relevant doses of inhaled diesel particles elicit pulmonary inflammation and impair lung mechanics. Eugenol, a methoxyphenol component of clove oil, presents in vitro and in vivo anti-inflammatory and antioxidant properties. Our aim was to examine a possible protective role of eugenol against lung injuries induced by diesel particles. Male BALB/c mice were divided into four groups. Mice received saline (10 mu l in; CTRL group) or 15 mu g of diesel particles DEP (15 mu g in; DIE and DEUG groups). After 1 h, mice received saline (10 mu l; CTRL and DIE groups) or eugenol (164 mg/kg; EUG and DEUG group) by gavage. Twenty-four hours after gavage, pulmonary resistive (Delta P1), viscoelastic (Delta P2) and total (Delta Ptot) pressures, static elastance (Est), and viscoelastic component of elastance (Delta E) were measured. We also determined the fraction areas of normal and collapsed alveoli, amounts of polymorpho- (PMN) and mononuclear cells in lung parenchyma, apoptosis, and oxidative stress. Est, Delta P2, Delta Ptot, and Delta E were significantly higher in the DIE than in the other groups. DIE also showed significantly more PMN, airspace collapse, and apoptosis than the other groups. However, no beneficial effect on lipid peroxidation was observed in DEUG group. In conclusion, eugenol avoided changes in lung mechanics, pulmonary inflammation, and alveolar collapse elicited by diesel particles. It attenuated the activation signal of caspase-3 by DEP, but apoptosis evaluated by TUNEL was avoided. Finally, it could not avoid oxidative stress as indicated by malondialdehyde.
Resumo:
Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important in embedded and high-performance computing systems. They allow performance levels close to the ones obtained with Application-Specific Integrated Circuits, while still keeping design and implementation flexibility. However, to efficiently program FPGAs, one needs the expertise of hardware developers in order to master hardware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a high-level compilation flow (e.g., from C programs) still have to address open issues before broader efficient results can be obtained. Bearing in mind an FPGA available resources, it has been developed LALP (Language for Aggressive Loop Pipelining), a novel language to program FPGA-based accelerators, and its compilation framework, including mapping capabilities. The main ideas behind LALP are to provide a higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware resources, and to allow the programmer to control execution stages whenever the compiler techniques are unable to generate efficient implementations. Those features are particularly useful to implement loop pipelining, a well regarded technique used to accelerate computations in several application domains. This paper describes LALP, and shows how it can be used to achieve high-performance computing solutions.
Resumo:
The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.