9 resultados para Deep-sea channel

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the impact and fate of the summer phytoplankton bloom on Antarctic benthos, we evaluated temporal and spatial patterns in macrofaunal abundance and taxonomic composition along a transect crossing the West Antarctic Peninsula (WAP) continental shelf As part of the FOODBANCS project, we sampled three sites at 550-625 m depths during five cruises occurring in November 1999, February-March 2000, June 2000, October 2000 and March 2001. We used a combination of megacore and box-core samplers to take 81 samples, and collected over 30,000 macrofaunal individuals, one of the largest sampling efforts on the Antarctic shelf to date. Comparison of the two sampling methodologies (box core and megacore) indicates similar macrofaunal densities, but with significant differences in taxonomic composition, a reflection of the different spatial scales of sampling. Macrorfaunal abundances on the WAP shelf were relatively high compared to other Antarctic shelf settings. At two of the three sampling sites, macrofaunal abundance remained constant throughout the year, which is consistent with the presence of a sediment `food bank`. Differences were observed in taxonomic composition at the site closest to the coast (Station A), driven by higher abundances of subsurface-deposit feeders. A significant temporal response was observed in the ampharetid polychaetes at Station A, with an abundance peak in the late fall post-bloom period; this may have resulted from juvenile recruitment during the summer bloom. Familial composition of macrofaunal polychaetes on the WAP shelf is more closely related to deep-sea abyssal fauna than to other shelf regions, and we hypothesize that this is a result of both local ecological conditions (low temperatures) and a reflection of historical processes such as extinctions on the Antarctic shelf during previous glacial maxima followed by recolonization from the deep sea. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Verrucosispora isolate AB-18-032(T), the abyssomicin- and proximicin-producing actinomycete, has chemotaxonomic and morphological properties consistent with its classification in the genus Verrucosispora. The organism formed a distinct phyletic line in the Verrucosispora 16S rRNA gene tree sharing similarities of 99.7%, 98.7% and 98.9% with Verrucosispora gifhornensis DSM 44337(T), Verrucosispora lutea YIM 013(T) and Verrucosispora sediminis MS 426(T), respectively. It was readily distinguished from the two latter species using a range of phenotypic features and from V. gifhornensis DSM 44337(T), its nearest phylogenetic neighbor, by a DNA G+C content of 65.5 mol% obtained by thermal denaturation and fluorometry and DNA:DNA relatedness values of 64.0% and 65.0% using renaturation and fluorometric methods, respectively. It is apparent from the combined genotypic and phenotypic data that strain AB-18-032(T) should be classified in the genus Verrucosispora as a new species. The name Verrucosispora maris sp. nov. is proposed for this taxon with isolate AB-18-032(T) (= DSM 45365(T) = NRRL B-24793(T)) as the type strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological aspects of sailfin dory, Zenopsis conchifer, were studied from 839 individuals obtained from deep-sea commercial bottom trawling off southern Brazil at depths up to 526 m in 2002 and 2003. Samples included fish from 101 mm Lt and 15 g up to 640 mm Lt and 2,9 g. The sex-ratio was 50% at 150 mm Lt and between 300-350 mm Lt, with females outnumbering males in the remaining size classes. Reproductive activity seems to peak between July and August ( austral winter). Size at attainment of 50% maturity (Lt(50)) was 311 mm Lt in females. The mean length and maturity of the specimens increased with depth, suggesting that larger fish concentrate in deeper waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Madrepora is one of the most ecologically important genera of reef-building scleractinians in the deep sea, occurring from tropical to high-latitude regions. Despite this, the taxonomic affinities and relationships within the genus Madrepora remain unclear. To clarify these issues, we sequenced the mitochondrial (mt) genome of the most widespread Madrepora species, M. oculata, and compared this with data for other scleractinians. The architecture of the M. oculara mt genome was very similar to that of other scleractinians, except for a novel gene rearrangement affecting only cox2 and cox3. This pattern of gene organization was common to four geographically distinct M. oculata individuals as well as the congeneric species M. minutiseptum, but was not shared by other genera that are closely related on the basis of cox1 sequence analysis nor other oculinids, suggesting that it might be unique to Madrepora. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep-sea environments of the South Atlantic Ocean are less studied in comparison to the North Atlantic and Pacific Oceans. With the aim of identifying the deep-sea bacteria in this less known ocean, 70 strains were isolated from eight sediment samples (depth range between 1905 to 5560 m) collected in the eastern part of the South Atlantic, from the equatorial region to the Cape Abyssal Plain, using three different culture media. The strains were classified into three phylogenetic groups, Gammaproteobacteria, Firmicutes and Actinobacteria, by the analysis of 16s rRNA gene sequences. Gammaproteobacteria and Firmicutes were the most frequently identified groups, with Halomonas the most frequent genus among the strains. Microorganisms belonging to Firmicutes were the only ones observed in all samples. Sixteen of the 41 identified operational taxonomic units probably represent new species. The presence of potentially new species reinforces the need for new studies in the deep-sea environments of the South Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological aspects of sailfin dory, Zenopsis conchifer, were studied from 839 individuals obtained from deep-sea commercial bottom trawling off southern Brazil at depths up to 526 m in 2002 and 2003. Samples included fish from 101 mm Lt and 15 g up to 640 mm Lt and 2,9 g. The sex-ratio was 50% at 150 mm Lt and between 300-350 mm Lt, with females outnumbering males in the remaining size classes. Reproductive activity seems to peak between July and August (austral winter). Size at attainment of 50% maturity (Lt50) was 311 mm Lt in females. The mean length and maturity of the specimens increased with depth, suggesting that larger fish concentrate in deeper waters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sunken parcels of macroalgae and wood provide important oases of organic enrichment at the deep-sea floor, yet sediment community structure and succession around these habitat islands are poorly evaluated. We experimentally implanted 100-kg kelp falls and 200 kg wood falls at 1670 m depth in the Santa Cruz Basin to investigate (1) macrofaunal succession and (2) species overlap with nearby whale-fall and cold-seep communities over time scales of 0.25-5.5 yr. The abundance of infaunal macrobenthos was highly elevated after 0.25 and 0.5 yr near kelp parcels with decreased macrofaunal diversity and evenness within 0.5 m of the falls. Apparently opportunistic species (e.g., two new species of cumaceans) and sulfide tolerant microbial grazers (dorvilleid polychaetes) abounded after 0.25-0.5 yr. At wood falls, opportunistic cumaceans become abundant after 0.5 yr, but sulfide tolerant species only became abundant after 1.8-5.5 yr, in accordance with the much slower buildup of porewater sulfides at wood parcels compared with kelp falls. Species diversity decreased significantly over time in sediments adjacent to the wood parcels, most likely due to stress resulting from intense organic loading of nearby sediments (up to 20-30% organic carbon). Dorvilleid and ampharetid polychaetes were among the top-ranked fauna at wood parcels after 3.0-5.5 yr. Sediments around kelp and wood parcels provided low-intensity reducing conditions that sustain a limited chemoautrotrophically-based fauna. As a result, macrobenthic species overlap among kelp, wood, and other chemosynthetic habitats in the deep NE Pacific are primarily restricted to apparently sulfide tolerant species such as dorvilleid polychaetes, opportunistic cumaceans, and juvenile stages of chemosymbiont containing vesicomyid bivalves. We conclude that organically enriched sediments around wood falls may provide important habitat islands for the persistence and evolution of species dependent on organic- and sulfide-rich conditions at the deep-sea floor and contribute to beta and gamma diversity in deep-sea ecosystems. (C) 2010 Elsevier Ltd. All rights reserved.