5 resultados para Debris avalanche

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) can be used to analyze the presence of debris and smear layer on the internal walls of root canal. This study evaluated the debris and smear removal in flattened root canals using SEM after use of different irrigant agitation protocols. Fifty mandibular incisors were distributed into five groups (n = 10) according to the irrigant agitation protocol used during chemomechanical preparation: conventional syringe irrigation with NaviTip needle (no activation), active scrubbing of irrigant with brush-covered NaviTip FX needle, manual dynamic irrigation, continuous passive ultrasonic irrigation, and apical negative pressure irrigation (EndoVac system). Canals were irrigated with 5 mL of 2.5% NaOCl at each change of instrument and received a final flush with 17% EDTA for 1 min. After instrumentation, the roots were split longitudinally and SEM micrographs at x 100 and x 1,000 were taken to evaluate the amount of debris and smear layer, respectively, in each third. Data were analyzed by KruskalWallis and Dunn's post-hoc tests (a = 5%). Manual dynamic activation left significantly (p < 0.05) more debris inside the canals than the other protocols, while ultrasonic irrigation and EndoVac were the most effective (p < 0.05) for debris removal. Regarding the removal of smear layer, there was no statistically significant difference (p > 0.05) either among the irrigant agitation protocols or between the protocolcanal third interactions. Although none of the irrigant agitation protocols completely removed debris and smear layer from flattened root canals, the machine-assisted agitation systems (ultrasound and EndoVac) removed more debris than the manual techniques. Microsc. Res. Tech. 75:781790, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the efficacy of QMiX, SmearClear, and 17% EDTA for the debris and smear layer removal from the root canal and its effects on the push-out bond strength of an epoxy-based sealer by scanning electron microscopy (SEM). Forty extracted human canines (n = 10) were assigned to the following final rinse protocols: G1-distilled water (control), G2–17% EDTA, G3-SmearClear, and G4-QMiX. The specimens were submitted to a SEM analysis to evaluate the presence of debris and smear layer, respectively, in the apical or cervical segments. In sequence, forty extracted human maxillary canines with the root canals instrumented were divided into four groups (n = 10) similar to the SEM analysis study. After the filling with AH Plus, the roots were transversally sectioned to obtain dentinal slices. The specimens were submitted to a push-out bond strength test using an electromechanical testing machine. The statistical analysis for the SEM and push-out bond strength studies were performed using the Kruskal–Wallis and Dunn tests (α = 5%). There was no difference among the G2, G3, and G4 efficacy in removing the debris and smear layer (P > 0.05). The efficacy of these groups was superior to the control group. The push-out bond strength values of G2, G3, and G4 were superior to the control group. The ability to remove the debris and smear layer by SmearClear and QMiX was as effective as the 17% EDTA. The final rinse with these solutions promoted similar push-out bond strength values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study sought to evaluate the efficacy of passive ultrasonic irrigation (PUI) on removing the smear layer and debris from root dentin using scanning electron microscopy (SEM). Twenty-five bovine incisors were manually prepared and divided into three groups according to the final irrigation protocol: EDTA, final irrigation with 12 mL of 17% EDTA for 3 minutes followed by 5 mL of 2.5% NaOCl; EDTA=PUI, final flush with 4 mL of 17% EDTA and PUI for 30 seconds. These procedures were repeated three times to standardize the volume of the irrigant. Control group, after preparation, the specimens were irrigated only with 17 mL of 2.5% NaOCl. The roots were fractured and analyzed using SEM. The intragroup analysis revealed that the EDTA=PUI protocol removed a higher amount of debris at the cervical third (P 5 0.03). The intergroup analysis revealed that EDTA=PUI presented the lowest amount of debris at the cervical third (P 5 0.007). Smear layer scores were higher in the control group compared with the EDTA and EDTA=PUI groups, but only at the cervical third (P 50.02). None of the final irrigant protocols completely removed the smear layer and debris. EDTA=PUI only improved the removal of debris at the cervical third.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: A growing interest to preserve teeth into the mouth by patients resulted in the increasing number of endodontic retreatments, and when these happen, many different types of irritants are extruded through the foramen. Objective: This study analyzed in vitro the amount of debris extruded through the foramen using four instrumentation techniques during endodontic retreatment. Material and methods: Forty mesial-buccal roots of first molars were selected, instrumented with anatomical diameter up to size #30 ISO file and then obturated with gutta-percha and grossman sealer by lateral condensation. After, they were separated and randomly allocated into four groups with 10 teeth each for the endodontic retreatment procedure: G1 – conventional technique + solvent, G2 – conventional technique without solvent, G3 – ProTaper retreatment + solvent, G4 – ProTaper retreatment without solvent. In all groups, gutta-percha in the coronal portion was removed by using size 1-3 Gates Glidden drills. All teeth were irrigated with distilled water. The debris extruded through the foramen were collected and weighed by an analytical balance. Results: Group 4 had the lowest average for material extrusion through the foramen followed by groups 2, 3 and 1. When Tukey test for statistical analysis was applied, no significant difference among groups were found (p = 0.5664). Conclusion: We conclude that all instrumentation techniques used in this study produced debris which goes beyond the foramen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a ≥5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a ≥3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < –0.8 and/or α > 1.7. Likewise, we find that β < –0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a ≥3 M Jup planet beyond 10 AU, and β < –0.8 and/or α < –1.5. Likewise, β < –0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation >40 AU and planet masses >3 M Jup do not carve the central holes in these disks.