7 resultados para Datação por luminescência (LOE)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper presents the results of TL and OSL dating of soil and fragments of bricks from a grave, which was occupied by two mummified nuns, found at "Luz" Monastery, located in the state of São Paulo, Brazil. The TL and OSL ages were compared to C-14 dating ones obtained from bone collagens of the mummies. The majority of the ages is related to the eighteenth century. The gamma-ray spectroscopy was used to evaluate natural radioisotope concentrations in the samples, and by using these concentrations the annual dose rates, from 3.0 to 5.3 Gy/kyr, were obtained. Neutron activation analysis was performed and the radioisotope contents results are in agreement with those obtained by gamma-ray spectroscopy. The contents of U, Th and Ce elements were higher than those found in usual sediments.
Resumo:
The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.
Resumo:
Chemical abrasion was carried out on zircons grains of the Temora II standard for U-Pb dating prior to analyses using in situ Laser Ablation-MultiCollector Ion Coupled Plasma Mass Spectrometer (LA-ICPMS) followed by the Isotope Dissolution Thermal Ionization Mass Spectrometer (ID-TIMS) method. The proposed methodology was herein applied in order to reduce primarily the effects of secondary Pb loss, the presence of common lead and/or silicate impurities. Nine Temora II zircon grains were analyzed by the laser ablation method yielding an age of 418.3±4.3 Ma. Zircon grains of a same population were separated for chemical abrasion before dissolution and mass spectrometry analyses. Six fractions of them were separated for isotope dissolution using 235U-205Pb mixed spike after we have checked and assured the laboratory conditions of low blank values for total Pb of less than 2 pg/g. The obtained U-Pb zircon age by the ID-TIMS method was 415.7±1.8 Ma (error 0.43 %) based on four successful determinations. The results are consistent with the published ages for the Temora diorite (Temora I â 416.75±1.3 Ma; Temora II â 416.78±0.33 Ma) and established as 416±0.33 Ma. The technique is thus recommended for high precision U-Pb zircon analyses (error < 1 %), mainly for high resolution stratigraphic studies of Phanerozoic sequences.
Resumo:
Erbium doped tellurite glasses (TeO2 + Li2O + TiO2) were prepared by conventional melt-quenching method to study the influence of the Er3+ concentration on the luminescence quantum efficiency (η) at 1.5 µm. Absorption and luminescence data were used to characterize the samples, and the η parameter was measured using the well-known thermal lens spectroscopy. For low Er3+ concentration, the measured values are around 76%, and the concentration behavior of η shows Er-Er and Er-OH- interactions, which agreed with the measured lifetime values.
Resumo:
Less invasive and more effective cancer treatments have been the aim of research in recent decades, e.g. photothermal tumour ablation using gold nanorods. In this study we investigate the cell death pathways activated, and confirm the possibility of CTAB-coated nanoparticle use in vivo. Nanorods were synthesized by the seeding method; some of them were centrifuged and washed to eliminate soluble CTAB. The MTT cytotoxicity test was performed to evaluate cytotoxicity, and the particles' viability after their synthesis was assessed. Once it had been observed that centrifuged and washed nanorods are harmless, and that nanoparticles must be used within 48 h after their synthesis, in vivo hyperthermic treatment was performed.After irradiation, a tumour biopsy was subjected to a chemiluminescence assay to evaluate membrane lipoperoxidation, and to a TRAP assay to evaluate total antioxidant capacity. There was a 47 ºC rise in temperature observed at the tumour site. Animals irradiated with a laser (with or without nanorods) showed similar membrane lipoperoxidation, more intense than in control animals. The antioxidant capacity of experimental animal tumours was elevated. Our results indicate that necrosis is possibly the cell death pathway activated in this case, and that nanorod treatment is worthwhile.
Resumo:
This work reports on the construction and spectroscopic analyses of optical micro-cavities (OMCs) that efficiently emit at ~1535 nm. The emission wavelength matches the third transmission window of commercial optical fibers and the OMCs were entirely based on silicon. The sputtering deposition method was adopted in the preparation of the OMCs, which comprised two Bragg reflectors and one spacer layer made of either Er- or ErYb-doped amorphous silicon nitride. The luminescence signal extracted from the OMCs originated from the 4I13/2→4I15/2 transition (due to Er3+ ions) and its intensity showed to be highly dependent on the presence of Yb3+ ions.According to the results, the Er3+-related light emission was improved by a factor of 48 when combined with Yb3+ ions and inserted in the spacer layer of the OMC. The results also showed the effectiveness of the present experimental approach in producing Si-based light-emitting structures in which the main characteristics are: (a) compatibility with the actual microelectronics industry, (b) the deposition of optical quality layers with accurate composition control, and (c) no need of uncommon elements-compounds nor extensive thermal treatments. Along with the fundamental characteristics of the OMCs, this work also discusses the impact of the Er3+-Yb3+ ion interaction on the emission intensity as well as the potential of the present findings.
Resumo:
The resistance to photodegradation of poly [(2-methoxy-5-n-hexyloxy)-p-phenylene vinylene] (OC1OC6-PPV) films was significantly enhanced by the use of poly(vinyl alcohol) 99% hydrolyzed as protective coating. The deposition of poly(vinyl alcohol) onto OC1OC6-PPV films did not affect the absorption and the emission spectra of the luminescent polymer. The protected film showed 5% drop on the absorbance at 500nm after 270 hours of light exposure while the unprotected film completely degraded in the same conditions. The conductivity of the protected film remained stable (around 7 × 10-10 S/m) while the value for the unprotected one dropped around two orders of magnitude after 100 hours of light exposure.